
1Open Computing Institute, Inc.
JDBC

JDBC

2Open Computing Institute, Inc.
JDBC

JDBC Overview

• Stands for Java Database Connectivity

• A standard interface for accessing data
sources

– normally databases (works with Excel)

– based on X/Open SQL Call Level Interface (CLI)

– allows databases packages to be replaced without
affecting application code

• assuming no database specific features are needed and the
databases are SQL-92 entry-level compliant

• A base for building higher level tools and
APIs such as JavaBlend (see p. 4)

• Defined by
– interfaces and classes in the java.sql package

• Implemented by
– data source specific JDBC drivers

• accept JDBC calls and perform operations using the API of the
specific database

– the JDBC-ODBC bridge
• a special JDBC driver

• included with JDK

3Open Computing Institute, Inc.
JDBC

JDBC Overview (Cont’d)

• Pure Java JDBC drivers can be
downloaded along with applets that use
them

• Drivers that use native methods cannot be
used by applets

– these drivers must be installed on each client and
used from Java applications

• Many vendors have endorsed JDBC
– Borland, Gupta, IBM, Informix, Intersolv,

Object Design, Oracle, RogueWave, SAS, SCO,
Sybase, Symantec, Visigenic, WebLogic, and more

• To claim full JDBC compliance, drivers
must

– be SQL-92 entry-level compliant

– contain all classes and methods in the JDBC API

4Open Computing Institute, Inc.
JDBC

JDBC Overview (Cont’d)

• Databases are specified with URL syntax
protocol:subprotocol:data-source

• Mapping database types to Java types
– maps most SQL data types to Java data types

– types that have no direct mapping are represented
with

• special Java classes

– ex. Date, Time

• binary large objects (BLOBs)

– for images, sounds, and documents

• Javasoft's JavaBlend will automate
mapping records in relational database
tables to Java objects

– will allow transparent database access
• like serialization allows transparent reading and writing

of objects

– JDBC code to perform database queries and updates
will be generated

always "jdbc" used to select appropriate driver
("odbc" for JDBC-ODBC bridge)

driver specific string for
locating a data source

5Open Computing Institute, Inc.
JDBC

Why Doesn’t Java Use
ODBC Instead of JDBC?

• What is ODBC?
– written by Microsoft

– provides access to most popular relational databases

• Problems with using ODBC directly
– Relies on C code which violates Java security

• applets can’t use it

– Translating ODBC into pure Java would be difficult
due to its heavy use of pointers

– ODBC is harder to learn than JDBC
• complex, rarely used operations coexist with common ones

• must learn a lot in order to use basic functionality

• with JDBC, uncommon operations are supported by separate
interfaces from those that provide basic functionality

• Design of JDBC
– based on ODBC and the

X/OPEN SQL Call Level Interface

– makes it easy for ODBC developers to learn

• JDBC-ODBC Bridge
– allows access to ODBC databases from Java

applications

6Open Computing Institute, Inc.
JDBC

Ways to Utilize JDBC

• Two Tier
– Java applet communicates directly with a database

on the web server from which the applet was
downloaded

• requires a 100% Java database driver so it can be downloaded

– Java application communicates directly with a
database on any server

• JDBC driver doesn't have to be pure Java but must be on
the client

• Three Tier
– middle tier can provide

• a higher-level API, not just SQL

• control over database access

• performance advantages

– ex. load balancing and caching frequently accessed data

– Java applet communicates with a Java application on
the web server from which the applet was
downloaded (via sockets, RMI, or CORBA) which
communicates directly with a database on any server

– Java application communicates with a Java
application on any server (via sockets, RMI, or
CORBA) which communicates directly with a
database on any server

7Open Computing Institute, Inc.
JDBC

How JDBC Deals With
Non-Standard Database

• Databases that are not SQL-92 entry-level
compliant are supported by JDBC in three
ways

• Database metadata
– used to determine the capabilities of a database at

run-time

• Query strings
– any query string can be passed to a database driver

• ODBC-style escape clauses
– supports common diversions from the SQL-92

standard

8Open Computing Institute, Inc.
JDBC

Types of JDBC Drivers
That Applets Cannot Use

• Type 1 - JDBC-ODBC Bridge
– client translates JDBC calls to database independent

ODBC

– server translates ODBC calls to database specific
calls

– applets can’t directly use this since it uses native
methods

• could access a middle tier on the web server that uses this

– requires bridge software on clients

• Type 2 - Native-protocol, not pure Java
– client translates JDBC calls to database specific calls

– server has no translation to perform

– applets can’t directly use this since it uses native
methods

• could access a middle tier on the web server that uses this

– requires JDBC driver software on clients

9Open Computing Institute, Inc.
JDBC

Types of JDBC Drivers
That Applets Can Use

• Type 3 - JDBC-Network protocol, pure Java
– client translates JDBC calls to database independent

network protocol (who defined this?)

– server translates network protocol to one or more
database specific protocols

– applets can use this

• Type 4 - Native-protocol, pure Java
– client translates JDBC calls to database specific

network protocol

– applets can use this

– most efficient

10Open Computing Institute, Inc.
JDBC

JDBC Architecture

• When Java code requests a data source
connection the DriverManager chooses the
appropriate registered driver

– determined from subprotocol in URL specification
• ex. jdbc:odbc:MySource

– see “JDBC Setup” on page 12

Java Applications & Applets

JDBC API

JDBC DriverManager

JDBC Driver JDBC Driver

Database A Database B Database C

11Open Computing Institute, Inc.
JDBC

Architecture With
JDBC/ODBC Bridge

• Bridge developed by Javasoft and Intersolv

• Applets cannot use the bridge because it
uses native methods

Java Applications

JDBC API

JDBC DriverManager

ODBC Driver ODBC Driver

Database D E

ODBC DriverManager

JDBC/ODBC Bridge
(a type of JDBC driver)

JDBC Driver JDBC Driver

Database A B C F

12Open Computing Institute, Inc.
JDBC

JDBC Setup

• JDK1.1 includes
– java.sql package

– JDBC-ODBC Bridge

• Only setup required is to specify data
sources

– Under Win 95/NT the Driver Manager is configured
in Settings…Control Panels…[32bit]ODBC

• UNIX Oracle has a similar registry in /etc/tnsnames.ora

– To add a new data source under Win 95/NT
• click the “Add …” button

• select an ODBC driver such as
“Microsoft Access Driver” or “Microsoft Excel Driver”

• click the “OK” button

• enter a name and description for the data source

• click the “Select…” button to select an existing database
OR
click the “Create…” button to create a new database

– use "Network..." button to select the remote drive containing the
database

– select a directory and enter a name for the new database

• click the “OK” button

• click the “Advanced…” button to specify a username and password for
accessing the database

• click the “Options>>“ button to request

– exclusive access to the database (one user at a time)

– read-only access to the database

• click the "OK" button

INSTRUCTOR
Java
Adv
JDBC
AddressBookAccess
AddressBook.mdb

13Open Computing Institute, Inc.
JDBC

SQL Overview

• Stands for Structured Query Language

• SQL keywords are case-insensitive

• Whether table and column names are case-
sensitive is database dependent

14Open Computing Institute, Inc.
JDBC

SQL Data Definition
Language (DDL)

Commands

• To create a table
CREATE TABLE table-name (

column-name type {modifiers},
...,
column-name type {modifiers})

• To delete a table
DROP TABLE table-name

• To add a column to a table
ALTER TABLE table-name

ADD COLUMN column-name type {modifiers}

• To delete a column from a table
ALTER TABLE table-name

DROP column-name

valid column types and modifiers
may be database dependent

15Open Computing Institute, Inc.
JDBC

SQL Data Manipulation
Language (DML)

Commands

• To add a row into a table
INSERT INTO table-name

(column-name, ..., column-name)

VALUES (value, ..., value)

• To modify rows in a table
UPDATE table-name

SET column-name = value, ..., column-name = value

WHERE condition

• To delete rows in a table
DELETE FROM table-name

WHERE condition

• To select rows in a table
SELECT column-name, ..., column-name

FROM table-name(s)

WHERE condition

– selected rows are returned in a ResultSet

– use * in place of column names to select all columns

– can perform "joins" using multiple table names
separated by commas

• condition specifies affected rows
• use LIKE to compare strings
• use relational operators to compare #'s

not needed if all values
are supplied in order

the where clause can be
omitted to operate on
every row

16Open Computing Institute, Inc.
JDBC

JDBC Example

import java.io.*;

import java.sql.*;

import sun.jdbc.odbc.*;

public class AddressBookDB {

 public static void main(String[] args) {

 try {

 // Load the JDBC-ODBC driver.

 // This creates a single instance of the driver.

 // The drivers static initializer passes this instance

 // to DriverManager.registerDriver().

 // There are other ways to accomplish this

 // but this method is the most common.

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 // Direct driver log information to a file for debugging.

 try {

 FileOutputStream fos = new FileOutputStream("db.log");

 // Note: The PrintStream class has been deprecated.

 // PrintWriter replaces it. However, we can't

 // use that because setLogStream still requires

 // a PrintStream.

 PrintStream ps = new PrintStream(fos);

 DriverManager.setLogStream(ps);

 } catch (IOException ioe) { // if the file cannot be opened

 System.err.println(ioe);

 }

17Open Computing Institute, Inc.
JDBC

JDBC Example (Cont’d)

 // Connect to a database.

 // DriverManager.getConnection() checks each loaded driver

 // in order and selects the first one that is able to

 // process the specified database.

 // AddressBookDB is associated with a specific database

 // in Settings...Control Panel...32bit ODBC.

 // No username or password is required for this database.

 String url = "jdbc:odbc:AddressBookDB";

 Connection con =

 DriverManager.getConnection(url, "", "");

 // Create a Statement object for executing SQL statements

 // against the database.

 Statement stmt = con.createStatement();

 String sql;

 ResultSet rs;

 int rowCount;

 // Delete an existing table from the database.

 sql = "DROP TABLE Person";

 stmt.executeUpdate(sql);

 // Add a new table to the database.

 // Access95 doesn't support the types CHAR and VARCHAR.

 sql = "CREATE TABLE Person (" +

 "lastName TEXT CONSTRAINT C1 PRIMARY KEY, " +

 "firstName TEXT, " +

 "street TEXT, " +

 "city TEXT, " +

 "state TEXT, " +

 "zipCode TEXT, " +

 "email TEXT)";

 stmt.executeUpdate(sql);

name of the constraint
(can be anything)

username password

name of data source,
not a database

18Open Computing Institute, Inc.
JDBC

JDBC Example (Cont’d)

 // Add a record to a table in the database specifying

 // fields in the order they are defined in the database.

 sql = "INSERT INTO Person " +

 "VALUES ('Volkmann', 'Mark', '10 Galaxy Dr.', " +

 "'St. Peters', 'MO', '63376', " +

 "'mvolkman@mail.win.org')";

 stmt.executeUpdate(sql);

 // Add another record to a table in the database

 // specifying a subset of the fields in a different order.

 sql = "INSERT INTO Person " +

 "(email, firstName, lastName, street, state) " +

 "VALUES ('gosling@eng.sun.com', 'Jimmy', " +

 "'Gosling', '123 Sun Ave.', 'CA')";

 stmt.executeUpdate(sql);

 // Change fields within a database record.

 sql = "UPDATE Person " +

 "SET firstName = 'James', city = 'Palo Alto' " +

 "WHERE lastName = 'Gosling'";

 rowCount = stmt.executeUpdate(sql);

 // Select records from the database.

 sql = "SELECT state, email FROM Person " +

 "WHERE lastName='Volkmann'";

 rs = stmt.executeQuery(sql); // returns a ResultSet object

of records
updated

19Open Computing Institute, Inc.
JDBC

JDBC Example (Cont’d)

 // Process the result set.

 ResultSetMetaData rsmd = rs.getMetaData();

 int columns = rsmd.getColumnCount();

 while (rs.next()) {

 for (int pos = 1; pos <= columns; ++pos) {

 Object obj = rs.getObject(pos);

 System.out.println

 (rsmd.getColumnLabel(pos) + " = " + obj +

 " (type = " + obj.getClass().getName() + ")");

 }

 }

 // Delete records from a table in the database.

 sql = "DELETE FROM Person WHERE lastName='Volkmann'";

 rowCount = stmt.executeUpdate(sql);

 // Remove a column from a table.

 sql = "ALTER TABLE Person DROP street";

 stmt.executeUpdate(sql);

 // Add a column to a table.

 sql = "ALTER TABLE Person ADD COLUMN birthDate DATE";

 stmt.executeUpdate(sql);

data describing
the results

of records
deleted

Besides calling getObject on a ResultSet you can also call getByte, getBytes, getDate,
getDouble, getFloat, getInt, getLong, getShort, getString, getTime, and getTimeStamp.
All of these accept one argument that is either a column index or a column name.

1) moves cursor to the next row;
 previous(), which would require support for scrollable cursors in JDBC drivers, is not implemented
2) pos is the column number in current row of the result set;
 can also use column name but that is less efficient

see note 1 at bottom

see note 2
at bottom

20Open Computing Institute, Inc.
JDBC

JDBC Example (Cont’d)

 // ClassNotFoundException is thrown if the ODBC-JDBC Bridge

 // is not found.

 } catch (ClassNotFoundException e) {

 System.err.println(e);

 } catch (SQLException e) { // catch-all for database exceptions

 System.out.println("Message = " + e.getMessage());

 System.out.println("SQLState = " + e.getSQLState());

 System.out.println("Vendor Code = " + e.getErrorCode());

 } finally {

 // Close the database connection.

 con.close();

 }

 } // end of main()

} // end of class

catches for the try block that
starts at the top of main()

• Statements, ResultSets, and Connections are all
 automatically closed when they are garbage collected.
• Closing a Statement frees associated ResultSets.
• Closing a ResultSet frees associated result objects.
• Some databases may limit active resources such as
 Statements, ResultSets, and Connections so it may be
 necessary to explicitly close them before reusing them.

XOpen SQLState defined in the
Xopen SQL specification

• Can also access a chain of exceptions that led to
 this one with SQLException.getNextException()
• Some JDBC drivers may generate non-fatal errors
 represented by java.sql.SQLWarning and
 java.sql.DataTruncation. Get these with calls to
 Connection.getWarnings() until it returns null.

21Open Computing Institute, Inc.
JDBC

Statement Class
Execute Methods

• stmt.executeQuery(String sql)
– returns a ResultSet object

– used for these SQL statements
• SELECT

• stmt.executeUpdate(String sql)
– returns the number of rows affected

– used for these SQL statements
• INSERT - for inserting one row in a table

• UPDATE - for modifying one or more rows in a table

• DELETE - for deleting one or more rows in a table

• CREATE TABLE - returns zero

• DROP TABLE - returns zero

• ALTER TABLE - returns zero

these were used in the
previous example code

22Open Computing Institute, Inc.
JDBC

Statement Class
Execute Methods (Cont'd)

• stmt.execute(String sql)
– for SQL statements that may be a query or an update

– used for stored procedures that result in
• more than one ResultSet

• more than one row count

• both ResultSets and row counts

– returns a boolean indicating whether results were
obtained

– use getMoreResults() and getResultSet() to get all
ResultSets

– use getUpdateCount() to get each row count
• returns -1 when there are no more

methods
in the
Statement
class

23Open Computing Institute, Inc.
JDBC

PreparedStatements

• Provide efficient repeated execution of
SQL statements that differ only by their
parameters

• When a PreparedStatement object is
created, the statement is sent to the DBMS
and compiled

• Creating a PreparedStatement
PreparedStatement updatePhone =

 con.prepareStatement

 ("UPDATE Person SET phone = ? WHERE name = ?");

– question marks indicate where parameters will be
inserted

• Executing a PreparedStatement
updatePhone.setString(1, "(123)456-7890");

updatePhone.setString(2, "Doe, John");

updatePhone.executeUpdate();

– there are set?() methods for all Java types

– parameters retain their values until changed or
clearParameters() is called

– also supports execute() and executeQuery()

24Open Computing Institute, Inc.
JDBC

CallableStatements

• For calling with stored procedures
– groups of SQL statements stored in compiled form

on database servers

– can have IN, OUT, and INOUT parameters

– syntax for creating differs by database

• Example
CREATE PROCEDURE PersonsByState AS

 SELECT name, city, phone

 FROM Person WHERE state = ? ORDER BY name

– can contain more than one SQL statement

• To add a stored procedure to the database
Statement stmt = con.createStatement();

stmt.executeUpdate("CREATE PROCEDURE ...");

25Open Computing Institute, Inc.
JDBC

CallableStatements (Cont'd)

• To call a stored procedure
CallableStatement cStmt =

 con.prepareCall("{call PersonsByState(?)}");

cStmt.setString(1, "MO");

ResultSet resultSet = cStmt.executeQuery();

– CallableStatement extends PreparedStatement so ?
parameters can be used in the same way

– also supports execute() and executeUpdate()
• execute() is useful when there is more than one statement in the

stored procedure since it allows more than one row count and
more than one ResultSet to be obtained

• Three forms of calling stored procedures
– no parameters or return value
con.prepareCall("{call procedure-name}")

– parameters but no return value
con.prepareCall("{call procedure-name(?, ?, ...)}")

– parameters and a return value
con.prepareCall

 ("{? = call procedure-name[(?, ?, ...)]}")th
es

e
cr

ea
te

 a
C

al
la

bl
eS

ta
te

m
en

t
ob

je
ct

th
at

 s
til

l m
us

t b
e

ex
ec

ut
ed

26Open Computing Institute, Inc.
JDBC

CallableStatements (Cont'd)

• Usually only IN parameters are used

• The types of OUT and INOUT parameters
must be registered before a
CallableStatement can be executed
cStmt.registerOutParameter(1, java.sql.Types.VARCHAR);

• To set the values of IN or INOUT
parameters

– use the set?() methods inherited from
PreparedStatement

• To get the values of OUT or INOUT
parameters

– use the get?() methods in CallableStatement

• For more detail see the Addison Wesley
book "JDBC Database Access with Java"

27Open Computing Institute, Inc.
JDBC

Transactions

• A database transaction is group of database
operations that must

– all complete successfully then commit
OR

– all rollback (undo changes they caused)

28Open Computing Institute, Inc.
JDBC

Transactions (Cont'd)

• The java.sql.Connection interface provides
methods for implementing transactions

– by default each JDBC statement calls con.commit()
before completing

• where con is a Connection object

– disable this by calling con.setAutoCommit(false)

– add calls to con.commit() where appropriate
• such as at the end of a try block

– add calls to con.rollback() where appropriate
• such as in corresponding catch blocks

– database records are locked when they are read, not
just when they are modified

– commit() makes database modifications permanent
and releases all database locks associated with the
transaction

– rollback() discards all changes made in transaction
and releases all locks associated with the transaction

– after commit() or rollback() complete, a new
transaction is automatically started

29Open Computing Institute, Inc.
JDBC

Transaction Isolation Levels

• Resolve attempts to access locked records

• Select one of five levels with
con.setTransactionIsolation(int level);

– see constants on page 31

• Specific databases may not support all five

• Determine which are supported with
DatabaseMetaData metadata = con.getMetaData();
int level = metadata.getDefaultTransactionIsolation();
boolean supported =
 metadata.supportsTransactionIsolationLevel(int level);

30Open Computing Institute, Inc.
JDBC

Transaction Isolation Levels
(Cont’d)

• Situations under which a locked record
could be read

– dirty read
• reading modified, locked records

• don't know if the modification will be committed

– non-repeatable read
• reading unmodified, locked records

• the transaction that holds the lock may modify and
commit before it releases the lock

– phantom read
• reading newly inserted records, locked records

• the transaction that holds the lock may rollback,
not saving the new record

31Open Computing Institute, Inc.
JDBC

Transaction Isolation Levels
(Cont’d)

• The levels (ordered from least to most restrictive)

– TRANSACTION_NONE
• transactions are not supported

• every operation is immediately committed

– TRANSACTION_READ_UNCOMMITTED
• dirty and phantom reads allowed

• non-repeatable reads disallowed

– TRANSACTION_READ_COMMITTED
• non-repeatable and phantom reads allowed

• dirty reads disallowed

– TRANSACTION_REPEATABLE_READ
• dirty and non-repeatable reads disallowed

• phantom reads allowed

– TRANSACTION_SERIALIZABLE
• locked records cannot be read

• dirty, non-repeatable, and phantom reads disallowed

1 0 1

0 1 1

0 0 1

0 0 0

 na

D N P (Dirty, Non-repeatable, Phantom)

Other combinations of D, N, & P don't make sense.

