
1Open Computing Institute, Inc. Serialization

Serialization

2Open Computing Institute, Inc. Serialization

Serialization Overview

• Allows objects to be saved to and restored
from streams
– includes files and sockets

• Goals
– be simple to use
– be usable for all objects without customization

• not fully achieved, have to implement Serializable

– be extensible
• to customize what is written and read and how

– support marshaling and unmarshaling for RMI
– support persistence

• saving the state of a collection of objects and
restoring that state in a future session

– maintain security
• through ability to customize what is written

3Open Computing Institute, Inc. Serialization

Serialization Contents

• Full class name
– includes package name

• Class fingerprint
– a hashcode derived from the following class

elements
• interfaces
• field names and access modifiers
• methods names, access modifiers, and signatures

– changes to these, other than order, change the
fingerprint

• Field values
– only those that are not static or transient
– from highest superclass to the class of the object
– serialized and deserialized in an order that does not

depend on the order in which they appear in the class
definition

• can read objects that were saved before the field order was
changed

4Open Computing Institute, Inc. Serialization

Serialization of
Graph Structures

• When serializing one object, all objects
reachable from it are also serialized

• If an attempt is made to serialize an object
that has already been serialized, a “handle”
to the previously serialized object is
written

• Solves problem of dealing with
– multiple references to the same object
– circular references

• When an object is deserialized, all objects
accessible from it are also deserialized

5Open Computing Institute, Inc. Serialization

Serializable SalesEntry

import java.io.*;

public class SalesEntry implements Serializable {
 private String name;
 private Date date;
 private float sales;
 private transient int baseSalary;

 SalesEntry(String name,
 Date date,
 float sales,
 int baseSalary) {
 this.name = name;
 this.date = date;
 this.sales = sales;
 this.baseSalary = baseSalary;
 }
}

6Open Computing Institute, Inc. Serialization

SalesEntry With
Serialization (Cont'd)

• Serializing
SalesEntry entry =
 new SalesEntry("Mark Volkmann",
 new Date(),
 1234.56f,
 100000);
FileOutputStream fos = new

FileOutputStream("sales.jos");
ObjectOutput oo = new ObjectOutputStream(fos);
oo.writeObject(entry);
oo.close(); // can also oo.flush() since it's buffered

• Deserializing
FileInputStream fis = new FileInputStream("sales.jos");
ObjectInput oi = new ObjectInputStream(fis);
try {
 SalesEntry entry = (SalesEntry) oi.readObject();
} catch (ClassNotFoundException e) {

System.err.println(e);
}
oi.close();

jos stands for Java
Object Serialization.
No special extension
is required.

ObjectOutput is an interface that
ObjectOutputStream implements.

ObjectInput is an interface that
ObjectInputStream implements.

7Open Computing Institute, Inc. Serialization

Security Concerns

• In JDK 1.1 classes are not serializable
by default
– useful when programmers forget to consider security
– classes must declare themselves to be serializable

with "implements Serializable"

• Reasons to customize serialization
– only write and read non-sensitive fields

• excluding passwords, credit card numbers, file handles, ...

– encrypt and decrypt sensitive fields
• another way of doing this is to insert encrypting and decrypting

filters between the object and file streams to encrypt everything

– add compression
– verify that data being deserialized has not been made

invalid after it left Java’s control (ex. checksum)

• Three ways to customize serialization
– mark sensitive fields as transient
– implement Serializable and override

readObject() and writeObject()
– implement Externalizable and override

writeExternal() and readExternal()

8Open Computing Institute, Inc. Serialization

readObject() &
writeObject()

• MyEncrypter is a fictitious class that
– encrypts primitive values into Strings
– decrypts those Strings back to primitive values

public class SalesEntry implements Serializable {

 private void writeObject(ObjectOutputStream out) throws IOException {
 // Write all fields that are not transient or static,
 // including those in base classes.
 out.defaultWriteObject();

 // Write transient field baseSalary as an encrypted String.
 out.writeUTF(MyEncrypter.encryptInt(baseSalary));
 }

 private void readObject(ObjectInputStream in) throws IOException {
 // Read all fields that are not transient or static
 // including those in base classes.
 in.defaultReadObject();

 // Read transient field baseSalary from an encrypted String.
 baseSalary = MyEncrypter.decryptInt(in.readUTF());
 }
}

(only the changes to SalesEntry are shown)

9Open Computing Institute, Inc. Serialization

writeExternal() &
readExternal()

public class SalesEntry implements Externalizable {

 // A public no-arg constructor is required by
 // Externalizable.readExternal.
 public SalesEntry() {
 }

 // Method in the Externalizable interface.
 public void writeExternal(ObjectOutput out) throws IOException {
 // Can't use ObjectOutputStream.defaultWriteObject().
 // If base class fields require serialization
 // then code to perform that must be supplied here.
 out.writeUTF(name);
 out.writeObject(date); // use for objects and arrays
 out.writeFloat(sales);
 out.writeUTF(MyEncrypter.encryptInt(baseSalary));
 }

 // Method in the Externalizable interface.
 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 // Can't use ObjectInputStream.defaultReadObject().
 // If base class fields require deserialization
 // then code to perform that must be supplied here.
 name = in.readUTF();
 date = (Date) in.readObject(); // use for objects and arrays
 sales = in.readFloat();
 baseSalary = MyEncrypter.decryptInt(in.readUTF());
 }
}

extends Serializable

(only the changes to SalesEntry are shown)

tak
ing

 full re
sponsib

ility

for se
rial

izin
g all

req
uired

 fie
lds

10Open Computing Institute, Inc. Serialization

Treating Deserializaton
as a Transaction

• The problem
– attempting to deserialize an object that contains

references to other objects results in many objects
being deserialized

– an exception could be throw during deserialization of
any object

• ex. ClassNotFoundException if fingerprint has changed

– if all of the objects in the graph are not deserialized,
the objects that are deserialized may not be usable

– those objects may require cleanup

• The solution
– invoke registerValidation(ObjectInputValidation) on

the ObjectInputStream
• must pass an object that implements the ObjectInputValidation

interface

– it requests that validateObject () of the object passed
to registerValidation be called

• after the graph is deserialized
• before the main object being deserialized is returned from

readObject ()

– validateObject can determine whether cleanup is
needed and perform it

• throws InvalidObjectException otherwise

