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Serialization Overview

• Allows objects to be saved to and restored
from streams
– includes files and sockets

• Goals
– be simple to use
– be usable for all objects without customization

• not fully achieved, have to implement Serializable

– be extensible
• to customize what is written and read and how

– support marshaling and unmarshaling for RMI
– support persistence

• saving the state of a collection of objects and
restoring that state in a future session

– maintain security
• through ability to customize what is written
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Serialization Contents

• Full class name
– includes package name

• Class fingerprint
– a hashcode derived from the following class

elements
• interfaces
• field names and access modifiers
• methods names, access modifiers, and signatures

– changes to these, other than order, change the
fingerprint

• Field values
– only those that are not static or transient
– from highest superclass to the class of the object
– serialized and deserialized in an order that does not

depend on the order in which they appear in the class
definition

• can read objects that were saved before the field order was
changed
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Serialization of
Graph Structures

• When serializing one object, all objects
reachable from it are also serialized

• If an attempt is made to serialize an object
that has already been serialized, a “handle”
to the previously serialized object is
written

• Solves problem of dealing with
– multiple references to the same object
– circular references

• When an object is deserialized, all objects
accessible from it are also deserialized
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Serializable SalesEntry

import java.io.*;

public class SalesEntry implements Serializable {
    private String name;
    private Date date;
    private float sales;
    private transient int baseSalary;

    SalesEntry(String name,
               Date date,
               float sales,
               int baseSalary) {
        this.name = name;
        this.date = date;
        this.sales = sales;
        this.baseSalary = baseSalary;
    }
}
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SalesEntry With
Serialization (Cont'd)

• Serializing
SalesEntry entry =
    new SalesEntry("Mark Volkmann",
                   new Date(),
                   1234.56f,
                   100000);
FileOutputStream fos = new

FileOutputStream("sales.jos");
ObjectOutput oo = new ObjectOutputStream(fos);
oo.writeObject(entry);
oo.close(); // can also oo.flush() since it's buffered

• Deserializing
FileInputStream fis = new FileInputStream("sales.jos");
ObjectInput oi = new ObjectInputStream(fis);
try {
    SalesEntry entry = (SalesEntry) oi.readObject();
} catch (ClassNotFoundException e) {

System.err.println(e);
}
oi.close();

jos stands for Java
Object Serialization.
No special extension
is required.

ObjectOutput is an interface that
ObjectOutputStream implements.

ObjectInput is an interface that
ObjectInputStream implements.
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Security Concerns

• In JDK 1.1 classes are not serializable
by default
– useful when programmers forget to consider security
– classes must declare themselves to be serializable

with "implements Serializable"

• Reasons to customize serialization
– only write and read non-sensitive fields

• excluding passwords, credit card numbers, file handles, ...

– encrypt and decrypt sensitive fields
• another way of doing this is to insert encrypting and decrypting

filters between the object and file streams to encrypt everything

– add compression
– verify that data being deserialized has not been made

invalid after it left Java’s control (ex. checksum)

• Three ways to customize serialization
– mark sensitive fields as transient
– implement Serializable and override

readObject() and writeObject()
– implement Externalizable and override

writeExternal() and readExternal()
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readObject() &
writeObject()

• MyEncrypter is a fictitious class that
– encrypts primitive values into Strings
– decrypts those Strings back to primitive values

public class SalesEntry implements Serializable {

    private void writeObject(ObjectOutputStream out) throws IOException {
        // Write all fields that are not transient or static,
        // including those in base classes.
        out.defaultWriteObject();

        // Write transient field baseSalary as an encrypted String.
        out.writeUTF(MyEncrypter.encryptInt(baseSalary));
    }

    private void readObject(ObjectInputStream in) throws IOException {
        // Read all fields that are not transient or static
        // including those in base classes.
        in.defaultReadObject();

        // Read transient field baseSalary from an encrypted String.
        baseSalary = MyEncrypter.decryptInt(in.readUTF());
    }
}

(only the changes to SalesEntry are shown)
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writeExternal() &
readExternal()

public class SalesEntry implements Externalizable {

    // A public no-arg constructor is required by
    // Externalizable.readExternal.
    public SalesEntry() {
    }

    // Method in the Externalizable interface.
    public void writeExternal(ObjectOutput out) throws IOException {
        // Can't use ObjectOutputStream.defaultWriteObject().
        // If base class fields require serialization
        // then code to perform that must be supplied here.
        out.writeUTF(name);
        out.writeObject(date); // use for objects and arrays
        out.writeFloat(sales);
        out.writeUTF(MyEncrypter.encryptInt(baseSalary));
    }

    // Method in the Externalizable interface.
    public void readExternal(ObjectInput in)
    throws IOException, ClassNotFoundException {
        // Can't use ObjectInputStream.defaultReadObject().
        // If base class fields require deserialization
        // then code to perform that must be supplied here.
        name = in.readUTF();
        date = (Date) in.readObject(); // use for objects and arrays
        sales = in.readFloat();
        baseSalary = MyEncrypter.decryptInt(in.readUTF());
    }
}

extends Serializable

(only the changes to SalesEntry are shown)
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Treating Deserializaton
as a Transaction

• The problem
– attempting to deserialize an object that contains

references to other objects results in many objects
being deserialized

– an exception could be throw during deserialization of
any object

• ex. ClassNotFoundException if fingerprint has changed

– if all of the objects in the graph are not deserialized,
the objects that are deserialized may not be usable

– those objects may require cleanup

• The solution
– invoke registerValidation(ObjectInputValidation) on

the ObjectInputStream
• must pass an object that implements the ObjectInputValidation

interface

– it requests that validateObject () of the object passed
to registerValidation be called

• after the graph is deserialized
• before the main object being deserialized is returned from

readObject ()

– validateObject can determine whether cleanup is
needed and perform it

• throws InvalidObjectException otherwise


