
1

Web Services1

Web Services
Mark Volkmann

Partner
Object Computing, Inc.

Web Services2

What Are Web Services?

• Software services available over the internet
• Web-accessible components used to

create distributed applications
– can call each other
– can provide a bridge between other distributed architectures

such as CORBA, DCOM, EJB and Tuxedo

• Why now?
– simplicity

• HTTP is a simple transport protocol
• XML is simple message protocol

– web ubiquity
• it’s everywhere and accessible from many types of devices

– decrease in bandwidth cost
• DSL and cable modems now common in homes



2

Web Services3

Example of a Web Service

• Suppose a company maintains a large inventory of items 
from many different suppliers

• It must monitor the inventory so that items that are
nearly depleted can be reordered on time

• To reduce its own effort it could allow trusted suppliers
to monitor the inventory and ship items
without waiting to receive an order

• Inventory quantities can be exposed to suppliers
through web services

• Suppliers would write applications that
use these web services

not exposing the entire database, just a subset

Web Services4

Basic Roles and Operations

Service
Requester

Service
Broker

Service
Provider

fin
d bind

publish

could be a 
UDDI registry

could use 
SOAP

could use UDDI
find methods
to find WSDL
service descriptions

could use UDDI 
save methods
to publish WSDL
service descriptions

at 
de

sig
n-

tim
e

or
 ru

n-
tim

e

1

2

3



3

Web Services5

Benefits of Using Web Services

• Easier to maintain
– applications that use web services 

don’t have to track, download and 
install service code changes

– service vendor is responsible
for maintenance

• More up-to-date
– applications that use web services 

can always use the latest versions

• More choices of services
– can wrap access to any kind

of service so not limited to
a set based on

• operating system
• programming language
• distributed architecture

(CORBA, DCOM, EJB,
Tuxedo, …)

• Fewer software configuration 
issues

– when using a registry such as UDDI 
to find services at run-time, code just 
passes data, doesn't make calls
using service-specific APIs

• Easier to debug
– compared to applications that directly 

use service-specific APIs because
• you’re responsible for less of the code
• requests/responses are readable XML

• Loose coupling
– see “Just-In-Time Integration”

on next page

• Legacy apps. interoperate
– see “Web Services as Glue”

on page after next

Web Services6

Just-In-Time Integration

• Need to be able to catalog, discover and invoke services
– could select from a set of equivalent web services at run-time

based on availability, reliability, quality, cost, …

• Not coding to specific interfaces so less coupling than
– calls to statically bound services
– other distributed architectures like CORBA and EJB where

typically specific services with fixed interfaces are invoked

• You just specify the characteristics of the services needed 
and manage communication with them
– UDDI tModels describe web service metadata
– not required to find them this way; can just bind to known services

• Introduces a challenge for testing!
– different types of UDDI registries provide some safety - see page 25

applications built with 
these are more sensitive 
to change, especially 
API changes



4

Web Services7

Web Services as Glue

• Can wrap access to other kinds of distributed services
to make them web accessible

• Makes it possible for them to utilize each other
– for example, EJB methods invoking CORBA services
– especially useful when companies merge and

existing software needs to be integrated

SOAP
client

SOAP
router

SOAP
service

non-SOAP
service

XML request

XML response

IIOP
DCOM
JRMP

HTTP

typically a 
Java servlet

can be a “normal” 
Java class

Web Services8

Pieces of the Puzzle

ebXML

HTTP

XML/XML Schema

SOAP

WSDL

UDDI

.NET/BizTalk

service registry

business process frameworks

service description

message protocol

markup language and
data validation

transport protocol

high level

low level SMTP others
synchronous asynchronous



5

Web Services9

SOAP

• Simple Object Access Protocol
– an XML-based message protocol that supports

Remote Procedure Calls (RPC)
– requests and responses are XML documents
– can also be used to send one-way messages
– WSDL greatly reduces need to understand details of the XML

• more on this later

• Not tied to a particular transport protocol
– commonly uses HTTP for synchronous communication

• greatly simplifies firewall issues
– can use SMTP for asynchronous communication

• Simplicity is a key benefit
– compared to other distributed architectures

such as CORBA, DCOM and EJB

uses XML Namespaces 
and XML Schema

Web Services10

SOAP Standardization

• SOAP 1.2 spec. is a W3C Working Draft
– see SOAP Version 1.2 Part 1: Messaging Framework and Part 2: Adjuncts 

at http://www.w3.org/2000/xp/

• Also “SOAP Messages with Attachments” W3C Note
– http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
– specifies how SOAP messages can include attachments

such as binary image data
– allows all data needed by a service to be passed in one request message

• W3C XML Protocol (XMLP) Working Group
– formed in September 2000
– used original SOAP Note as a starting point is further defining it
– three participants of the AXIS project within Apache are members
– watch progress of this at http://www.w3.org/2000/xp



6

Web Services11

Who’s Backing SOAP?

• SOAP has broad vendor support
• These companies and more have representatives

on the W3C XML Protocol Working Group
– Allaire, AT&T, BEA Systems, Bowstreet, Compaq, Commerce One,

DevelopMentor, Fujitsu, Hewlett Packard, IBM, Informix, Intel,
IONA, Microsoft, MITRE, Netscape, Novell, Oracle, Rogue Wave,
Software AG, SAP AG, Sun Microsystems, Unisys, Xerox

Web Services12

SOAP Performance

• A concern since many steps are required to execute a call
– client

• create XML-based request
• create and send HTTP (or some other transport protocol) request to server

– server
• parse HTTP request
• parse XML request within HTTP request
• possibly create objects from XML to hold parameter data
• make service call
• create XML-based response from return value
• create and send HTTP (or some other transport protocol) response

– client
• parse HTTP response
• parse XML response within HTTP response
• possibly create objects from XML to represent result

could be an 
object containing 
lots of data



7

Web Services13

When Is SOAP Appropriate?

• Invoking code outside firewall
– most other distributed architectures have difficulty with this
– SOAP does this by communicating on port 80 which is typically open
– don’t need special web servers, routers, firewalls or proxy servers
– firewalls can filter SOAP traffic

• based on HTTP “Content-Type” header which is “text/xml”
• based on “SOAPAction” HTTP header

– specifies message intent of which may be the name of the service being invoked

• Invoking code written in a variety of languages
– available to more languages than CORBA
– only need support for XML and HTTP
– clients and servers can even be written in scripting languages

Web Services14

When Is SOAP Appropriate? (Cont’d)

• Invoking code not implemented
with a particular distributed architecture
– CORBA, DCOM, EJB, RMI, Tuxedo, …
– these have difficulty communicating with each other
– can wrap these calls in SOAP services to allow them to interoperate

• Invoking course-grained services
– fine-grained SOAP services would be too expensive in terms of

network traffic and message construction/parsing overhead

• Invoking code whose performance is not critical
– SOAP will likely be slower than other distributed architectures

due to XML generation/parsing and using HTTP



8

Web Services15

When Is SOAP Appropriate? (Cont’d)

• Don’t have software required by other
distributed architectures
– perhaps due to cost; currently most SOAP implementations are free
– if considering CORBA, perhaps to gain features or performance,

checkout The Ace ORB (TAO), free CORBA implementation
at http://theaceorb.com/

• Don’t have expertise to use other distributed architectures
– less training required compared to other distributed architectures
– many important features such as transaction support

were purposely omitted to keep the design simple;
features like this will be layered on by other specs. (see next page)

– translating data to and from XML is done for you by toolkits

• Passing hierarchical data
– better than using HTTP which posts name/value pairs

since XML data is structured

Web Services16

SOAP’s Missing Pieces

• Other capabilities will be layered on SOAP by other specs.
– security

• authentication and authorization
• see XKMS, S2ML and AuthXML

– transactions
• see XAML and XLANG

– payment
• billing for use of services
• possible models include subscription and per use charges

– reliability
• such as guaranteed message delivery in the event of client or server failures

– quality of service
• prioritized requests
• responses in a guaranteed amount of time



9

Web Services17

Comparing SOAP To Other
Distributed Architectures

• Dependence on platform, language or protocol
– DCOM is Windows platform-specific
– Java RMI and EJB are Java language-specific
– CORBA uses a specific protocol (IIOP)
– SOAP doesn’t depend on a particular platform, language or protocol

• Object-orientedness
– CORBA, RMI and other OO distributed architectures support

stateful, object-oriented methods on remote objects
– SOAP is more suited to executing remote, standalone functions (services)
– SOAP doesn’t operate on or pass remote object references

• although you could pass object ids that would be used
to find server-side objects that live across requests

– service implementations can be OO, but calls to them aren’t particularly

Web Services18

Comparing SOAP To Other
Distributed Architectures (Cont’d)

• Encoding/Protocol
– SOAP messages are encoded as XML text
– other distributed architectures use incompatible binary encodings

• good for performance, but bad for debugging and interoperability

• Adaptability to the internet
– IIOP and DCOM don’t adapt well, at least as currently implemented
– SOAP can send requests and receive responses using HTTP



10

Web Services19

Replacement For Similar Technologies?

• No!
– remote services can still be defined and accessed using

other distributed architectures such as CORBA, DCOM and EJB
– in situations where it is useful to access those services over HTTP,

they can be wrapped as SOAP services
• for example, could make selected EJB session bean methods web accessible
• see “Web Services as Glue” on page 7

– when more efficiency is needed, faster, non-SOAP protocols can be used

• Consider separating business logic from
code that is specific to a distributed architecture
– similar to the way business logic is typically separated

from user interface code

Web Services20

SOAP Server Implementation

• Only message content is standardized, not an API
– pro - each language-specific SOAP toolkit can be tailored to take 

advantage of the strengths and style of a particular programming language
– con - experience gained in using SOAP from one programming language

doesn’t transfer over to using it from a different one
– each implementation decides how it maps SOAP requests to service calls

• Typical OO implementation
– accept an HTTP request containing a SOAP request
– instantiate a server object of some class indicated in SOAP request

• when activation mode is “request” (as opposed to “session”)
– unmarshall XML arguments to objects of classes indicated in request
– pass argument objects to a method of the server object indicated in request
– marshall the return value into a SOAP response
– send SOAP response to client in an HTTP response



11

Web Services21

WSDL

• Web Services Description Language
– version 1.1 spec. has been submitted to the W3C as a Note

• by Ariba, IBM and Microsoft
• available at http://www.w3.org/TR/wsdl

• Describes web service requests and responses in XML
– similar to CORBA IDL but also includes the location of services (via a URL)
– two kinds of descriptions, service interfaces and implementations

• allows multiple implementations of the same interface
– these can be cataloged and searched in a registry such as UDDI

• Supports four kinds of operations
– one-way (client to server)
– request-response (client to server and back)
– solicit-response (server to client and back)
– notification (server to client)

Web Services22

WSDL Standardization

• W3C standardization of this concept is likely to begin soon
– probably will use WSDL as a starting point

in the same way that the W3C XMLP group
is using SOAP as a starting point

– more on XMLP later

The importance of WSDL will be emphasized later!



12

Web Services23

UDDI

• Universal Description, Discovery and Integration
• Provides a registry for web services

– similar to CORBA Naming and Trader services

• Can register and find several types of information
– white pages (service provider data)

• info. about service providers such as business name, description, contacts
and references to yellow pages data

– yellow pages (high-level service data)
• service name, description, category list and reference to green pages data
• services can be listed by several taxonomies (NAICS, UN/SPSC, geographical)

– North American Industry Classification System (NAICS)
– Universal Standard Products and Services Classification (UN/SPSC)

– green pages (low-level service data)
• service location, protocol to use (such as SOAP) and parameter info.
• can be supplied by referencing a WSDL file

Web Services24

UDDI Consortium and Registries

• Consortium
– UDDI was created by a consortium of 36 companies including

IBM, Microsoft and Ariba
– as of May 2001, there were 260 member companies including

• BEA Systems, HP, IBM, Intel, IONA, Microsoft,
Oracle, Rational, SAP, Sun Microsystems

• Boeing, Dell, Fujitsu, Merrill Lynch, Nortel Networks,
ObjectSpace, SilverStream, TIBCO, Verisign

• Registries
– IBM and Microsoft host free (currently) UDDI repositories

• HP will host one by the end of 2001
– services advertised to any of them are

replicated to the others within 24 hours
• typically much faster



13

Web Services25

Proposed UDDI Registry Types
(answers question of how dynamic service binding can be made more reliable)

• UDDI operator
– currently only IBM and Microsoft; soon HP
– could reduce risk of invoking a “bad” service by only using to

find businesses and services at design-time, not dynamically binding

• e-marketplace
– populated with a collections of related, legitimate businesses and services
– can restrict publish, find and bind usage to members

• Portal
– hosts business descriptions and services of a single company
– can restrict access to specific customers and monitor usage (what is being used and by whom)

• Partner catalog
– company owned registry containing only entries from trusted partners
– only used from within the company

• Internal enterprise
– like partner catalog but only contains entries from departments within company

• Test bed
– to test UDDI entries, web services and applications that use them

Web Services26

ebXML

• Electronic business XML framework
– primarily targeted toward B2B communication

• Defines standard
– business processes
– message structures

• based of SOAP Messages with Attachments
– more on this later

– company profile descriptions
– trading partner agreements
– registry for publishing and finding business processes

• defines its own registry, but implementations could use UDDI



14

Web Services27

ebXML Goals

• “Enable a global electronic marketplace where
enterprises of any size and in any geographical location
can meet and conduct business with each other
through the exchange of XML based messages”

• Improve on Electronic Data Interchange (EDI)
– be more cost effective
– eventually provide more functionality

• Allow businesses to automate the following
with no human involvement
– find partners that support specific business processes
– enter into trading partner agreements with them
– invoke their web services

Web Services28

Who’s Supporting ebXML?

• Standards organization support
– UN/CEFACT

• United Nations Centre for Trade Facilitiaon and Electronic Business
– OASIS

• Organization for the Advancement of Structured Information Standards
• a big player in XML-related standards

– DocBook (a DTD for computer documentation), conformance test suites
for XML, XPath and XSLT, Relax NG (alternative to XML Schema),
Security Assertion Markup Language (SAML) and more

– OMG
• Object Management Group

– moving toward publishing specifications that apply to all distributed architectures, 
not just CORBA

• Significant vendor support
– IBM, Oracle, Sun (not Microsoft since they prefer their .NET framework)
– Ariba, Commerce One, DataChannel, Fujitsu, Mitre, NEC, PeopleSoft

the UN also sponsors EDIFACT (EDI for 
Administration, Commerce and Transport)



15

Web Services29

Microsoft .NET / BizTalk

• Has basically the same set of requirements as ebXML
• .NET is a framework of server products
• BizTalk is one of them
• Uses other standards

– SOAP as message protocol
– WSDL to describe services
– UDDI for service registry
– XLANG to model business processes

• Seems complex
– compared to just using SOAP, WSDL and UDDI
– opinion gained from scanning books on .NET

Web Services30

Current State of Web Services

• Current web service tools
– suitable for creating simple web services and toy examples,

not enterprise-level services
– tools need more time to evolve
– experiment now to gain experience and

provide feedback to tool developers

• As of August 2001 there were at least 89
SOAP implementations (see http://www.soapware.org)
– covering a wide variety of operating systems and programming languages
– Apache AXIS, GLUE from The Mind Electric, IBM Websphere and 

Microsoft .NET are likely to be the first enterprise-level tools

• Interoperability between these still needs work
– they don’t support the same feature subsets
– the Microsoft and Apache teams are working to improve interoperability

need support for security, 
transactions and more



16

Web Services31

WSDL is the Key!

• WSDL can
– describe a web service, including it’s location
– be used to invoke a web service
– be generated from an existing web service implementation
– be used to generate a client stub for a web service

• provides compile-time type checking of parameters
being passed to a web service

– be used to generate a web service implementation skeleton
• in the case of Java, includes class definition with empty methods

• SOAP is under the covers
– no need to create or parse SOAP XML requests and responses

• toolkits do it for you
– no need to understand structure of SOAP XML requests and responses

• although it can be useful for debugging
– likewise there’s no need to understand structure of WSDL

Web Services32

General Web Service
Toolkit Functionality

Service Implementation
(can be a Java class, EJB, CORBA service, COM object, …)

WSDL

UDDI

SOAP

Client Proxy

SOAP
generate WSDL from 
web service code

communicate with 
a UDDI registry 
via SOAP

publish a WSDL description of a 
web service in a UDDI registry

retrieve a WSDL description of a 
web service from a UDDI registry

generate client proxy code for 
accessing a web service from WSDL

communicate with a 
web service via SOAP

invoke a web service 
through SOAP request 
and response messages

generate
a skeleton of
a web service impl. 
from WSDL Service 

Implementation 
Skeleton



17

Web Services33

Future Made Possible By WSDL

• Will be able to easily make calls between
any programming languages that can
– generate WSDL from web services implemented in the language
– generate client proxies in the language from WSDL

web service 
implemented in 
language x

WSDL
client proxy 
implemented in
language y

generate 
using
x toolkit

call using SOAP

generate 
using
y toolkit

Web Services34

Web Services Toolkit (WSTK)

• WSDL Generator Tool
– creates WSDL and Apache SOAP 

deployment descriptors from web 
service implementation classes

• don’t have to implement or extend
any particular interface or class

– uses reflection to allow selection of 
methods to expose in a Swing GUI

• Service Proxy Generator
– generates client stub Java code

from WSDL
• Service Implementation Template 

Generator
– generates the skeleton of a web service 

implementation from WSDL

• Web Services Browser
– publishes, unpublishes and finds web 

services described by WSDL in a
UDDI repository using a Swing GUI

• WSDL Document Classes
– creates and modifies WSDL

from Java code
• UDDI4J client API

– saves, deletes and finds data in a
UDDI registry from Java code

• Private UDDI registry
– can also use public UDDI registries

• Apache SOAP

• From IBM alphaWorks
– http://www.alphaworks.ibm.com/tech/webservicestoolkit

• Composed of the following components



18

Web Services35

Apache eXtensible Interaction System 
(AXIS)

• From Apache
– http://xml.apache.org/axis
– current version is alpha 2

• WSDL support
– ServiceClient class can invoke any web service described with WSDL

• need to supply URL of SOAP router, URL of WSDL,
operation name and operation parameters

• no compile-time parameter type checking
• supports proxy servers

– Wsdl2java tool generates
• client stubs for type-safe invocations
• service implementation skeletons for

implementing services described by WSDL
– automatically generates WSDL for deployed web services

• clients can access by appending “?WSDL” to the URL of the web service 
which is typically http://<host>/axis/services/<service-name>

Web Services36

AXIS (Cont’d)

• Web service deployment
– instant deployment

• simply copy a .java file to axis web app. directory and
change the extension to .jws (for Java Web Service)

– custom deployment using a deployment descriptor
• allows more control for deployment without source code,

custom type mappings and more

• Type mapping
– refers to serializing Java objects to an from XML in SOAP messages
– handles automatically for specified Java classes

that follow the Java Beans pattern

– can customize for specified Java classes

• SOAP message monitoring
– TCP Monitor tool monitors SOAP request and response messages



19

Web Services37

WebLogic Server

• From BEA
– http://www.bea.com/products/weblogic/server
– current version is 6.1

• A commercial Java server product that supports
– servlets, JSP, JDBC, EJB, JMS, web services and more
– version 6.1 is first to offer web service support

• Features
– supports SOAP 1.1 with Attachments and WSDL 1.1

– web service requests are routed by a special servlet

• Missing
– client proxy generation from WSDL
– service skeleton generation from WSDL
– support for UDDI

Web Services38

WebLogic Supports Two Types
of Web Services

• WebLogic web services must be implemented
as stateless session beans or JMS destinations
– a heavy requirement in terms of development time
– other web service toolkits don’t require this
– what is needed is a utility to automatically generate EJB code

from a “normal” Java class

• Which type to use?
– use session beans for synchronous, RPC-style web services
– use JMS for asynchronous, message-style web services



20

Web Services39

WebLogic RPC-style Web Service Steps

• Steps (all of which can be automated using Ant)
– implement web service as a stateless session EJB

• remote interface, home interface and bean class
– compile these .java files
– create a JAR file containing

• .class files, ejb-jar.xml and weblogic-ejb-jar.xml
– run weblogic.ejbc on the JAR file to create

• an EJB JAR file containing the contents of the first JAR
plus EJB container-generated classes

• a JAR containing only the classes needed by client applications
– run wsgen on the EJB JAR file to create an EAR file

• enterprise archive
– deploy the EAR file to WebLogic

• copy to WL_HOME/config/domain/applications

these XML files specify 
characteristics of the EJBs

Web Services40

WebLogic Web Service Web Pages

• A web page is automatically generated
for each web service context
– url is http://weblogic-host:weblogic-port/bean-name

• Contains
– a link that returns WSDL for all operations defined for the context

• generated automatically!
– a link to a client JAR file

• contains all the code necessary for Java-clients to invoke the operations
• requires Clients to hard-code knowledge of the EJB remote interfaces
• if you’re going to use this, what’s the point of using SOAP?
• for Java client to Java service implementations, EJB calls can be used



21

Web Services41

GLUE

• From The Mind Electric
– http://www.themindelectric.com
– current version is 1.2
– GLUE Professional is a commercial product
– GLUE Standard is free and has a subset of the capabilities
– one of the easiest toolkits to use
– created by Graham Glass

• CEO, chief architect and founder of The Mind Electric
• has written many excellent articles about web services

– see http://www-106.ibm.com/developerworks/webservices/ under “Columns”
• his Prentice Hall book “Web Services: Building Blocks

for Distributed Systems” will be out in late 2001

• Not an acronym
– named after a common use of SOAP which is to create applications

by gluing together pieces of distributed functionality

Web Services42

GLUE Toolkit Contents

• A Java toolkit that provides
– embedded web server with a servlet engine
– SOAP processor
– Electric XML parser

• a free DOM-alternative that may be faster and use fewer resources
– graphical console
– dynamic WSDL generator
– dynamic Java/XML mapping (similar to what JAXB provides)
– UDDI client and server
– WAP support
– XML persistent storage system

see examples of this later



22

Web Services43

Publishing and Invoking
Web Services in GLUE

• Three ways to publish services
– from console web interface
– from command line using GLUEServer
– from Java using Registry.publish

• Four ways to invoke services
– from console web interface

• see “GLUE Console Method Screen” page ahead
• invoking services this way is mainly for testing

– from command line using WSDL
– from Java using WSDL
– from Java using generated client stubs

• see code example on “GLUE Console Java Screen” page ahead
• produces most readable client code

Web Services44



23

Web Services45

GLUE Console Opening Screen

Enter a WSDL URL here and click “WSDL” to view information 
about the services described in it on the “Service Screen”.

Enter a GLUE server URL here 
and click “HOME” to view a 
list of services deployed in it
and deploy additional services.

Web Services46

GLUE Console Service Screen

Click this to get to 
“WSDL screen”.

Click this to get to 
“Method Screen”.

Click this to generate a Java interface for the service and a client stub Java class 
on the “Java Screen”. To use them, copy the code into a text editor and save.



24

Web Services47

GLUE Console WSDL Screen

Web Services48

GLUE Console Method Screen

Enter arguments in input fields and click this
to invoke the method and display the result here.

Click this to return 
to “Service Screen”.



25

Web Services49

GLUE Console Java Screen

To use the generated code,
copy it to a text editor,
save it and compile it.

Client code looks like this.

ITemperatureService s =
TemperatureServiceHelper.bind();

float temperature =
s.getTemp("63304");

Web Services50

SOAP and Web Services

• Provides a working knowledge of
standards that comprise “web services”

• Duration: 3 days
• Prerequisites

– Java Programming course or equivalent Java experience
– eXtensible Markup Language course or equivalent XML experience

• Topics (tentative)
– Overview of Web Services
– Simple Object Access Protocol (SOAP)
– Web Services Description Language (WSDL)
– Universal Description, Discovery and Integration (UDDI)
– Electronic Business XML (ebXML)
– Web Service toolkits (AXIS, WSTK, GLUE)
– JUDDI - a Java API for accessing UDDI registries

For more information on 
this and other OCI courses, 
contact Jessica Hardin
at 314-579-0066.


