
ECMAScript (ES) 2015
a.k.a. ES6

Mark Volkmann
Object Computing, Inc.

slides are at ociweb.com/mark;
search for “MidwestJS”

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

ECMAScript

Specification for the JavaScript language

Defined by ECMA technical committee TC39

Many ES 2015 features provide
syntactic sugar for more concise code

One goal of ES 2015 and beyond is to make JavaScript a
better target for compiling to from other languages

Spec sizes
ES5 - 258 pages

ES 2015 (6th edition) - 566 pages (approved on June 17, 2015)

2

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

ES 2015 to ES5 Transpilers

The most popular are listed here

All of these can be installed using npm,
can be run from gulp and Grunt,
and support sourcemaps

Babel - 72%
https://babeljs.io

Traceur - 59%
from Google; https://github.com/google/traceur-compiler/

TypeScript - 52%
from Microsoft; http://www.typescriptlang.org

“a typed superset of JavaScript that compiles to plain JavaScript”

supports optional type specifications for variables, function return values, and function parameters

has goal to support all of ES 2015

not currently a goal to transpile all ES 2015 features to ES5!

3

percentages are as of 8/6/15

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Use ES 2015 Today?

For a summary of ES 2015 feature support in browsers and transpilers,
see ES6 compatibility table from Juriy Zaytsev (a.k.a. kangax)

http://kangax.github.io/compat-table/es6/

4

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

ES 2015 Features

The following slides describe most of the features in ES 2015

5

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Block Scope

let declares variables like var, but they have block scope

not hoisted to beginning of enclosing block, so references before declaration are errors

most uses of var can be replaced with let (not if they depend on hoisting)

const declares constants with block scope
must be initialized

reference can’t be modified,
but object values can

Function and class definitions
are block scoped

Use a {} block
in place of an IIFE

6

function demo() {
 console.log(name); // error
 console.log(age); // error
 const name = 'Mark';
 let age = 53;
 age++; // okay
 name = 'Richard'; // error

 if (age >= 18) {
 let favoriteDrink = 'daquiri';
 ...
 }
 console.log(favoriteDrink); // error
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Default Parameters

Example

Default value expressions can refer to preceding parameters

Explicitly passing undefined triggers use of default value

makes it okay for parameters with default values to precede those without

Idiom for required parameters (from Allen Wirfs-Brock)

7

let today = new Date();

function makeDate(day, month = today.getMonth(), year = today.getFullYear()) {
 return new Date(year, month, day).toDateString();
}

console.log(makeDate(16, 3, 1961)); // Sun Apr 16 1961
console.log(makeDate(16, 3)); // Wed Apr 16 2014
console.log(makeDate(16)); // Sun Feb 16 2014

run on 2/28/14

function req() { throw new Error('missing argument'); }
function foo(p1 = req(), p2 = req(), p3) {
 ...
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Rest Operator

Gathers variable number of arguments after named parameters
into an array

If no corresponding arguments are supplied,
value is an empty array, not undefined

Removes need to use arguments object

8

function report(firstName, lastName, ...colors) {
 let phrase = colors.length === 0 ? 'no colors' :
 colors.length === 1 ? 'the color ' + colors[0]:
 'the colors ' + colors.join(' and ');
 console.log(firstName, lastName, 'likes', phrase + '.');
}

report('John', 'Doe');
// John Doe likes no colors.
report('Mark', 'Volkmann', 'yellow');
// Mark Volkmann likes the color yellow.
report('Tami', 'Volkmann', 'pink', 'blue');
// Tami Volkmann likes the colors pink and blue.

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Spread Operator

Spreads out elements of any “iterable” (discussed later)
so they are treated as separate arguments to a function
or elements in a literal array

Mostly removes need to use Function apply method

9

let arr1 = [1, 2];
let arr2 = [3, 4];
arr1.push(...arr2);
console.log(arr1); // [1, 2, 3, 4]

let dateParts = [1961, 3, 16];
let birthday = new Date(...dateParts);
console.log(birthday.toDateString());
// Sun Apr 16, 1961

alternative to
arr1.push.apply(arr1, arr2);

examples of things that are iterable
include arrays and strings

let arr1 = ['bar', 'baz'];
let arr2 = ['foo', ...arr1, 'qux'];
console.log(arr1); // ['foo', 'bar', 'baz', 'qux']

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Destructuring ...

Assigns values to any number of variables
from values in iterables and objects

Can be used in variable declarations/assignments,
parameter lists, and for-of loops (covered later)

Can’t start statement with {, so when
assigning to existing variables using object destructuring,
surround with parens

10

// Positional destructuring of iterables
let [var1, var2] = some-iterable;
// Can skip elements (elision)
let [,,var1,,var2] = some-iterable;

// Property destructuring of objects
let {prop1: var1, prop2: var2} = some-obj;
// Can omit variable name if same as property name
let {prop1, prop2} = some-obj;

({prop1: var1, prop2: var2} = some-obj);

get error if RHS is
null or undefined

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Destructuring ...

LHS expression can be nested to any depth
arrays of objects, objects whose property values are arrays, ...

LHS variables can specify default values

default values can refer to preceding variables

Positional destructuring can use rest operator for last variable

When assigning rather than declaring variables,
any valid LHS variable expression can be used

ex. obj.prop and arr[index]

Can be used to swap variable values

Useful with functions that have multiple return values
really one array or object

11

[a, b] = [b, a];

[var1 = 19, var2 = 'foo'] = some-iterable;

[var1, ...others] = some-iterable;

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Destructuring ...

12

let arr = [1, [2, 3], [[4, 5], [6, 7, 8]]];
let [a, [, b], [[c], [,, d]]] = arr;
console.log('a =', a); // 1
console.log('b =', b); // 3
console.log('c =', c); // 4
console.log('d =', d); // 8

let obj = {color: 'blue', weight: 1, size: 32};
let {color, size} = obj;
console.log('color =', color); // blue
console.log('size =', size); // 32

let team = {
 catcher: {
 name: 'Yadier Molina',
 weight: 230
 },
 pitcher: {
 name: 'Adam Wainwright',
 height: 79
 }
};
let {pitcher: {name}} = team;
console.log('pitcher name =', name); // Adam Wainwright
let {pitcher: {name: pName}, catcher: {name: cName} = team;
console.log(pName, cName); // Adam Wainwright Yadier Molina

extracting array
elements
by position

extracting object
property values
by name

creates name variable, but not pitcher

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Destructuring

Great for getting parenthesized groups of a RegExp match

Great for configuration kinds of parameters of
any time named parameters are desired (common when many)

13

function config({color, size, speed = 'slow', volume}) {
 console.log('color =', color); // yellow
 console.log('size =', size); // 33
 console.log('speed =', speed); // slow
 console.log('volume =', volume); // 11
}

config({
 size: 33,
 volume: 11,
 color: 'yellow'
});

let dateStr = 'I was born on 4/16/1961 in St. Louis.';
let re = /(\\d{1,2})\\/(\\d{1,2})\\/(\\d{4})/;
let [, month, day, year] = re.exec(dateStr);
console.log('date pieces =', month, day, year);

order is
irrelevant

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Arrow Functions

(params) => { expressions }

if only one parameter and not using destructuring, can omit parens

if no parameters, need parens

cannot insert line feed between parameters and =>

if only one expression, can omit braces and
its value is returned without using return keyword

expression can be another arrow function that is returned

if expression is an object literal,
wrap it in parens to distinguish it from a block of code

Inside arrow function,
this has same value as containing scope,
not a new value (called “lexical this”)

so can’t use to define constructor functions or prototype methods, only plain functions

Also provides “lexical super” for use in class constructors and methods
can use super keyword to invoke a superclass method

14

let arr = [1, 2, 3, 4];
let doubled = arr.map(x => x * 2);
console.log(doubled); // [2, 4, 6, 8]

let product = (a, b) => a * b;
console.log(product(2, 3)); // 6

let average = numbers => {
 let sum = numbers.reduce(
 (a, b) => a + b);
 return sum / numbers.length;
};
console.log(average(arr)); // 2.5

All functions now have a name
property. When an anonymous
function, including arrow functions,
is assigned to a variable,
that becomes the value
of its name property

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Symbols ...

Immutable identifiers that are guaranteed to be unique
unlike strings

To create a “local” symbol
let sym = Symbol(description);

new keyword is not used

description is optional and mainly useful for debugging

To retrieve description
sym.toString()

returns 'Symbol(description)'

A new primitive type
typeof sym === 'symbol'

15

Global Symbols

let gs = Symbol.for(description);
creates a new global symbol
if none with the description exists;
otherwise returns existing global symbol

To get description, Symbol.keyFor(gs)
- returns undefined for non-global symbols

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Symbols

Can use as object keys
obj[sym] = value;

They become non-enumerable properties
but can retrieve them with Object.getOwnPropertySymbols(obj), so not private

Can use to add “meta-level” properties or internal methods to an object
that avoid clashing with normal properties

Symbol.iterator is an example (described later)

Well Known Symbols
used as method names in custom classes to override how instances
are processed by certain operators and built-in class methods

see Symbol.hasInstance, Symbol.isConcatSpreadable, Symbol.iterator,
Symbol.match, Symbol.replace, Symbol.search, Symbol.split, Symbol.species,
Symbol.toPrimitive, Symbol.toStringTag, and Symbol.unscopables

16

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Enhanced Object Literals ...

Literal objects can omit value for a key
if it’s in a variable with the same name

similar to destructuring syntax

Computed property names can be specified inline

17

let fruit = 'apple', number = 19;
let obj = {fruit, foo: 'bar', number};
console.log(obj);
// {fruit: 'apple', foo: 'bar', number: 19}

// Old style
let obj = {};
obj[expression] = value;

// New style
let obj = {
 [expression]: value
};

one use is to define properties
and methods whose keys are
symbols instead of strings

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Enhanced Object Literals

Property method assignment
alternative way to attach a method to a literal object

18

let obj = {
 number: 2,
 multiply: function (n) { // old way
 return this.number * n;
 },
 times(n) { // new way
 return this.number * n;
 },
 // This doesn't work because the
 // arrow function "this" value is not obj.
 product: n => this.number * n
};

console.log(obj.multiply(2)); // 4
console.log(obj.times(3)); // 6
console.log(obj.product(4)); // NaN

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Classes ...

Use class keyword

Define constructor
and methods inside

one constructor function
per class

Really just sugar over
existing prototypal
inheritance mechanism

creates a constructor function
with same name as class

adds methods to prototype

19

class Shoe {
 constructor(brand, model, size) {
 this.brand = brand;
 this.model = model;
 this.size = size;
 Shoe.count++;
 }
 static createdAny() { return Shoe.count > 0; }
 equals(obj) {
 return obj instanceof Shoe &&
 this.brand === obj.brand &&
 this.model === obj.model &&
 this.size === obj.size;
 }
 toString() {
 return this.brand + ' ' + this.model +
 ' in size ' + this.size;
 }
}
Shoe.count = 0;

let s1 = new Shoe('Mizuno', 'Precision 10', 13);
let s2 = new Shoe('Nike', 'Free 5', 12);
let s3 = new Shoe('Mizuno', 'Precision 10', 13);
console.log('created any?', Shoe.createdAny()); // true
console.log('count =', Shoe.count); // 3
console.log('s2 = ' + s2); // Nike Free 5 in size 12
console.log('s1.equals(s2) =', s1.equals(s2)); // false
console.log('s1.equals(s3) =', s1.equals(s3)); // true

not a standard
JS method

class property

class method

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Classes ...

Inherit with extends keyword

In subclasses, constructor must call super(args)
and it must be before this is accessed
because the highest superclass creates the object

20

class RunningShoe extends Shoe {
 constructor(brand, model, size, type) {
 super(brand, model, size);
 this.type = type;
 this.miles = 0;
 }
 addMiles(miles) { this.miles += miles; }
 shouldReplace() { return this.miles >= 500; }
}

let rs = new RunningShoe(
 'Nike', 'Free Everyday', 13, 'lightweight trainer');
rs.addMiles(400);
console.log('should replace?', rs.shouldReplace()); // false
rs.addMiles(200);
console.log('should replace?', rs.shouldReplace()); // true

inside constructor, super(args)
calls the superclass constructor;
can only call super like this
in a constructor and only once

inside a method, super.name(args)
calls the superclass method name

value after extends can be an expression
that evaluates to a class/constructor function

this is not set until
call to super returns

inherits both instance and static methods

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Classes

In a class with no extends,
omitting constructor is the same as specifying
constructor() {}

In a class with extends,
omitting constructor is the same as specifying
constructor(...args) { super(...args); }

Can extend builtin classes like Array and Error

requires JS engine support; transpilers cannot provide

instances of Array subclasses can be used like normal arrays

instances of Error subclasses can be thrown like provided Error subclasses

Class definitions are
block scoped, not hoisted, and evaluated in strict mode

21

spreadrest

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Math/Number/String Additions

New functions on Math

fround, sign, trunc, cbrt, expm1, hypot, imul,
log1p, log10, log2, asinh, acosh, atanh

New functions on Number
isFinite, isNumber, isNaN, isSafeInteger,
toInteger, parseInt, parseFloat

New syntax for hexadecimal, octal, and binary literals
0xa === 10, 0o71 === 57, 0b1101 === 13

New functions and methods on String

methods: endsWith, startsWith, includes, repeat

handling UTF-16 characters (2 or 4 bytes) - codePointAt method, fromCodePoint function

22

can be represented
in 53 bits of a double

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Template Literals

Surrounded by backticks

Can contain any number of embedded expressions
${expression}

Can contain newline characters for multi-line strings

23

console.log(`${x} + ${y} = ${x + y}`);

let greeting = `Hello,
World!`;

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Tagged Template Literals ...

Preceded by a function name that will produce a customized result
examples include special escaping (ex. HTML encoding), language translation, and DSLs

Passed array of template strings outside expressions (“raw”)
and expression values as individual parameters (“cooked”)

24

function upValues(strings, ...values) {
 let result = strings[0];
 values.forEach((value, index) =>
 result += value.toUpperCase() + strings[index + 1]);
 return result;
}
let firstName = 'Mark';
let lastName = 'Volkmann';
console.log(upValues `Hello ${firstName} ${lastName}!`);
// Hello MARK VOLKMANN!

In this example
strings is ['Hello ', ' ', '!'] and
values is ['Mark', 'Volkmann']

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Tagged Template Literals

25

function dedent(strings, ...values) {
 let last = strings.length - 1, re = /\n\s+/g, result = '';
 for (let i = 0; i < last; i++) {
 result += strings[i].replace(re, '\n') + values[i];
 }
 return result + strings[last].replace(re, '\n');
}

let homeTeam = 'Cardinals';
let visitingTeam = 'Cubs';
console.log(dedent `Today the ${homeTeam}
 are hosting the ${visitingTeam}.`);

// If template starts with an expression, strings will start with ''.
// If template ends with an expression, strings will end with ''.
console.log(dedent `${homeTeam}
 versus
 ${visitingTeam}`);

Output
Today the Cardinals
are hosting the Cubs.
Cardinals
versus
Cubs

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Array Additions

New functions
of, from

New methods
copyWithin, find(predicate), findIndex(predicate), fill

entries - returns an iterator over [index, value] pairs of arr

keys - returns an iterator over indices of arr

values - returns an iterator over values in arr

26

same
API as
in Set
and Map

returns first matching
element or index

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Object Additions

New functions
assign (see next slide), is, setPrototypeOf, getOwnPropertySymbols

27

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Object.assign

Object.assign(target, src1, ... srcN)

copies properties from src objects to target (left to right), replacing those already present

returns target

can create shallow clone of an object

to create clone with same prototype

can use in constructors to assign initial property values

can use to add default properties to an object

28

class Shoe {
 constructor(brand, model, size) {
 this.brand = brand;
 this.model = model;
 this.size = size;
 // or
 Object.assign(this,
 {brand, model, size});
 }
 ...
}

uses enhanced object literal

let copy = Object.assign({}, obj);

function clone(obj) {
 let proto = Object.getPrototypeOf(obj);
 return Object.assign(
 Object.create(proto), obj);
}
let copy = clone(obj);

const DEFAULTS = {
 color: 'yellow',
 size: 'large'
};
let obj = {size: 'small'};
obj = Object.assign({}, DEFAULTS, obj); order is significant!

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

for-of Loops

New way of iterating over elements in an “iterable”
for arrays, this is an alternative to for-in loop and Array forEach method

better because its use isn’t restricted to arrays

Iteration variable is scoped to loop

Value after of can be any iterable (ex. an array)
cannot be an iterator

29

let stooges = ['Moe', 'Larry', 'Curly'];

for (let stooge of stooges) {
 console.log(stooge);
}

for (let [index, stooge] of stooges.entries()) {
 console.log(index, stooge);
}

can use const instead of let

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

New Collection Classes

Set

instances hold collections
of unique values

when values are objects,
they are compared by reference

values can be any type
including objects and arrays

Map

instances hold key/value pairs
where keys are unique

when keys are objects,
they are compared by reference

keys and values can be any type
including objects and arrays

differs from JavaScript objects in
that keys are not restricted to strings

WeakSet - similar API to Set, but

values must be objects

values are “weakly held”, i.e. can be garbage collected
if not referenced elsewhere

don’t have a size property

can’t iterate over values

no clear method to remove all values

WeakMap - similar API to Map, but

keys must be objects

keys are “weakly held”, i.e. a pair can be garbage collected
if key is not referenced elsewhere

at that point the value can be garbage collected if not referenced elsewhere

don’t have a size property

can’t iterate over keys or values

no clear method to remove all pairs

30

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Set Class

To create, let mySet = new Set()

can pass iterable object (such as an array) to constructor to add all its elements

To add a value, mySet.add(value);

To test for a value, mySet.has(value)

To delete a value, mySet.delete(value)

To delete all values, mySet.clear()

size property holds number of keys

keys method returns iterator over values

values method returns iterator over values

used by default in for-of loop

entries method returns iterator over
[value, value] pairs

forEach method is like in that in Array, but
passes value, value, and the Set to callback

31

chain to add multiple values

these
iterate in
insertion
order

methods for Set iteration
treat sets like maps
where corresponding keys
and values are equal
for API consistency

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Map Class

To create, let myMap = new Map()

can pass iterable object to constructor to add all its pairs (ex. array of [key, value])

To add or modify a pair, map.set(key, value)

To get a value, myMap.get(key);

returns undefined if not present

To test for a key, myMap.has(key)

To delete a pair, myMap.delete(key)

To delete all pairs, myMap.clear()

size property holds number of keys

keys method returns iterator over keys

values method returns iterator over values

entries method returns iterator over [key, value] arrays

used by default in for-of loop

forEach method is like in Array, but passes value, key, and the Map to callback

32

chain to add/modify multiple values

these
iterate in
insertion
order

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Promises ...

Proxy for a value that may be known in the future
after an asynchronous operation completes

Register to be notified when promise is resolved or rejected
with then and/or catch method

then method takes success and failure callbacks

catch method only takes failure callback

both return a Promise to support chaining

“success callback” is passed a value of any kind

“failure callback” is passed a “reason” which can be any kind of value,
but is typically an Error object or a string

Can call then on a promise after it has been resolved or rejected

the success or failure callback is called immediately

Three possible states: pending, resolved, and rejected
once state is resolved or rejected, can’t return to pending

33

call omit one callback

“resolved” state is
sometimes called “fullfilled”

.then(cb1, cb2) is similar to

.then(cb1).catch(cb2),
but differs in that cb2
won’t be invoked if cb1 throws

such as a REST call

ES 2016 will likely add
finally method

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Promises ...

Static methods
Promise.resolve(value) returns promise
that is resolved immediately with given value

Promise.reject(reason) returns promise
that is rejected immediately with given reason

Promise.all(iterable) returns promise
that is resolved when
all promises in iterable are resolved

resolves to array of results
in order of provided promises

if any are rejected, this promise is rejected

Promise.race(iterable) returns promise
that is resolved when
any promise in iterable is resolved
or rejected when
any promise in iterable is rejected

34

function asyncDouble(n) {
 return new Promise((resolve, reject) => {
 if (typeof n === 'number') {
 resolve(n * 2);
 } else {
 reject(n + ' is not a number');
 }
 });
}

asyncDouble(3).then(
 data => console.log('data =', data), // 6
 err => console.error('error:', err));

in real usage, some
asynchronous operation
would happen above

create with Promise constructor, passing it
a function that takes resolve and reject functions,
and calls one of them

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Promises

Supports chaining to reduce code nesting

Fine print
success callbacks should do one of three things

return a value, return the next promise to wait for, or throw

if a success callback returns a non-Promise value,
it becomes the resolved value of the Promise returned by then

if a success callback returns a Promise value,
the current promise resolves or rejects the same as it

if any Promise in the chain is rejected or throws,
the next failure callback in the chain receives it

if a failure callback returns a value,
it becomes the resolved value for the next success callback in the chain

35

asyncDouble(1).
 then(v => asyncDouble(v)).
 then(v => asyncDouble(v)).
 //then((v) => asyncDouble('bad')).
 then(v => console.log('success: v =', v)).
 catch(err => console.error('error:', err));

Output
success: v = 8

Without promises,
using only callbacks,
if an async function throws,
the calling function cannot catch it
and the error is swallowed.

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Modules

A JavaScript file that is imported by another is treated as a “module”
defined by a single, entire source file

contents are not wrapped in any special construct

Modules typically export values to be shared with other files that import it

Top-level variables and functions that are not exported
are not visible in other source files (like in Node.js)

Module code is evaluated in strict mode

Cyclic module dependencies are supported

36

simply containing
import or export statements
does not determine whether a
file will be treated as a module;
can’t determine just by
looking at the file

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Modules - Exporting

Can export any number of values from a module
values can be any JavaScript type including functions and classes

can optionally specify a default export
which is actually a named export with the name "default"

To define and export a value
export let name = value;

export function name(params) { ... }

export class name { ... }

To export multiple, previously defined values
export {name1, name2 as other-name2, ...};

To specify a default export
export default expr;

export {name as default};

export default function (params) { ... };

export default class { ... };

37

note ability to export a value
under a different name

same as previous line if value of expr is name

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Modules - Importing

Can import values from other modules

Imports are hoisted to top of file

To import all exports into a single object
import * as obj from 'module-path';

bindings from imports like obj is read-only

To import specific exports
import {name1, name2 as other-name, ...} from 'module-path';

To import the default export
import default-name from 'module-path';

import {default as default-name} from 'module-path';

To import the default export and specific exports
import default-name, {name1, name2, ...} from 'module-path';

To import a module only for its side effects
import 'module-path';

38

module paths are relative to containing file;
can start with ./ (the default) or ../

note ability to import a value
under a different name

same as previous line

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Guy Bedford Rocks!

ES6 Module Loader - https://github.com/ModuleLoader/es6-module-loader

“dynamically loads ES6 modules in browsers and NodeJS”

will track “JavaScript Loader Standard” at https://github.com/whatwg/loader

SystemJS - https://github.com/systemjs/systemjs

“universal dynamic module loader - loads ES6 modules (using ES6 Module Loader),
AMD, CommonJS, and global scripts (like jQuery and lo-dash) in the browser and NodeJS.”

dependency management handles circular references and
modules that depend on different versions of the same module (like Node.js does)

supports “loading assets ... such as CSS, JSON or images”

jspm - http://jspm.io and https://github.com/jspm

JavaScript Package Manager for SystemJS

“load any module format (ES6, AMD, CommonJS, and globals)
directly from any endpoint such as npm and GitHub”

“custom endpoints can be created”

“for development, load modules as separate files with ES6”

“for production, optimize into a bundle ... with a single command”

39

all of these support
Babel and Traceur

needed because browsers
and Node.js don’t support
ES 2015 modules yet

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Using jspm ...

To install and configure jspm
npm install -g jspm

jspm init

prompts and creates package.json and config.js

can accept all defaults

create index.html

setup a local file server

a good option is live-server

npm install -g live-server

live-server

browse localhost:8080

automatically transpiles using
Traceur (default) or Babel

automatically generates sourcemaps

To install modules
for packages in npm

jspm install npm:module-name (ex. jsonp)

by default, installs in jspm_packages/npm

for packages in GitHub
jspm install github:module-name

by default, installs in jspm_packages/github

for well-known packages
jspm install module-name

includes angularjs, bootstrap, d3, jquery, lodash,
moment, and underscore

see list at https://github.com/jspm/registry/blob/master/
registry.json

adds dependencies to package.json

adds System.config call in config.js

40

lesser used modules
require jspm configuration
before they can be installed

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Using jspm

To reinstall all dependencies
similar to npm, run jspm install

recreates and populates
jspm_packages directory

recreates config.js if it is missing

To make your own packages
compatible with jspm

see https://github.com/jspm/registry/wiki/
Configuring-Packages-for-jspm

can publish in npm or GitHub

allows others to install them using jspm

To bundle for production
jspm bundle-sfx --minify main

removes all dynamic loading and transpiling

generates build.js and build.js.map

replace all script tags in main HTML file
with one for build.js

if using Traceur, add
<script src="jspm_packages/traceur-runtime.js">
</script>

there are other bundling options,
but this seems like the best

won’t be necessary in the future
when browsers support HTTP2

will be able to download many files efficiently

today browsers limit concurrent HTTP requests
to the same domain to 6 or 8

41

sfx is short for
"self executing"

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 201542

<!DOCTYPE html>
<html>
 <head>...</head>
 <body>
 <div id="content"></div>

 <!-- Enable ES 2015 module loading and more. -->
 <script src="jspm_packages/system.js"></script>

 <!-- Enable loading dependencies
 that were installed with jspm. -->
 <script src="config.js"></script>

 <!-- Load the main JavaScript file
 that can import others. In this
 example, main.js is in same directory.
 Can also specify a relative directory path. -->
 <script>System.import('main');</script>
 </body>
</html>

index.html

import $ from 'jquery';
import * as strUtil from './str-util';

$('#content').text('initials are ' +
 strUtil.initials(
 'Richard Mark Volkmann'));

export function initials(text) {
 return text.split(' ').
 map(word => word[0]).
 join('');
}

main.js

main.js

str-util.js

jspm Example
the basics plus a little jQuery

jspm install jquery

may need .js file extension
in next version of jspm

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Iterators and Iterables

Iterators are objects that visit elements in a sequence
not created with a custom class; can be any kind of object

have a next method, described on next slide

Iterables are objects that have a method
whose name is the value of Symbol.iterator

this method returns an iterator

An object can be both an iterable and an iterator
obj[Symbol.iterator]() === obj
and obj has a next method

43

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Iterator next Method

Gets next value in sequence

Returns an object with value and done properties

If end of sequence has been reached, done will be true

can omit otherwise

Whether value has meaning when done is true depends on the iterator
but the for-of loop, spread operator, and destructuring will ignore this value

can omit value property

44

Why return a new object from next method
instead of returning the same object
with modified value and done properties?
It is possible for an iterator to be used by
more than one consumer and those consumers could
access the object returned by next asynchronously.
If each call doesn’t return a new object,
its properties could be modified after the object is received,
but before it checks the properties.
While this is a rare situation, implementers of iterators
can’t be sure how they will be used.

using value when done is true
is primarily useful in conjunction
with yield* in a generator

From Allen Wirfs-Brock ... “The specification of the Iterator interface
does not require that the 'next' method return a fresh object
each time it it called. So a userland iterator would not be
violating anything by reusing a result object.

However, the specifications for all ES2015 built-in iterators
require that they return fresh objects.

None of the built-in consumers of the Iterator interface (for-of,
Array.from, etc.) retain references to IteratorResult objects after
testing for 'done' and accessing the 'value', so semantically they
don't care whether the ResultObject is reused. However, such reuse
might preclude some otherwise plausible engine level optimizations.”

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Iterable Objects ...

Objects from these builtin classes are iterable
Array - over elements

Set - over elements

Map - over key/value pairs as [key, value]

DOM NodeList - over Node objects (when browsers add support)

Primitive strings are iterable
over Unicode code points

These methods on Array, Set, and Map return an iterator
entries - over key/value pairs as [key, value]

keys - over keys

values - over values

Custom objects can be made iterable
by adding Symbol.iterator method

45

objects returned are both
iterators and iterable

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Iterable Objects

Ordinary objects such as those created from object literals are not iterable
when this is desired, use Map class instead or write a function like the following

46

function objectEntries(obj) {
 let index = 0;
 let keys = Reflect.ownKeys(obj); // gets both string and symbol keys
 return { // the iterable and iterator can be same object
 [Symbol.iterator]() { return this; },
 next() {
 if (index === keys.length) return {done: true};
 let k = keys[index++], v = obj[k];
 return {value: [k, v]};
 }
 };
}

let obj = {foo: 1, bar: 2, baz: 3};
for (let [k, v] of objectEntries(obj)) {
 console.log(k, 'is', v);
}

this serves as an example of
how to implement an iterator to exclude symbol keys, use

Object.getOwnPropertyNames(obj)

can get an iterable for keys in an object with
Reflect.enumerate(obj);

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Iterable Consumers

for-of loop
for (let value of someIterable) { ... } // iterates over all values

spread operator
can add all values from iterable into a new array

let arr = [firstElem, ...someIterable, lastElem];

can use all values from iterable as arguments to a function, method, or constructor call
someFunction(firstArg, ...someIterable, lastArg);

positional destructuring
let [a, b, c] = someIterable; // gets first three values

Set constructor takes an iterable over values

Map constructor takes an iterable over key/value pairs

Promise methods all and race take an iterable over promises

In a generator, yield* yields all values in an iterable one at a time

47

will make sense after
generators are explained

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Iterable/Iterator Example #1

48

let fibonacci = {
 [Symbol.iterator]() {
 let prev = 0, curr = 1;
 return {
 next() {
 [prev, curr] = [curr, prev + curr];
 return {value: curr};
 }
 };
 }
};

for (let n of fibonacci) {
 if (n > 100) break;
 console.log(n);
}

1
2
3
5
8
13
21
34
55
89

iterators can also be implemented
with generators - see slide 55

skipping initial
values of 0 and 1
and starting at
the second 1

stops iterating when
done is true which
never happens here

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Iterable/Iterator Example #2

49

let arr = [1, 2, 3, 5, 6, 8, 11];
let isOdd = n => n % 2 === 1;

// This is less efficient than using an iterator because
// the Array filter method builds a new array and
// iteration cannot begin until that completes.
arr.filter(isOdd).forEach(n => console.log(n)); // 1 3 5 11

// This is more efficient, but requires more code.
function getFilterIterable(arr, filter) {
 let index = 0;
 return {
 [Symbol.iterator]() {
 return {
 next() {
 while (true) {
 if (index === arr.length) return {done: true};
 let value = arr[index++];
 if (filter(value)) return {value};
 }
 }
 };
 }
 };
}

for (let v of getFilterIterable(arr, isOdd)) {
 console.log(v); // 1 3 5 11
}

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Generators

Generator functions
return a generator which is a special kind of iterator

and same object is an iterable (has Symbol.iterator method)

can be paused and resumed via multiple return points,
each specified using yield keyword

each yield is hit in a separate call to next method

exit by

running off end of function

returning a specific value using return keyword

throwing an error

Can use as a producer
get values from a sequence one at a time by calling next method

supports lazy evaluation and infinite sequences

Can use as a consumer
provide data to be processed by passing values one at a time to next method

50

yield keyword can only be
used in generator functions

done will be true
after any of these
and will remain true

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Defining Generators

function* name(params) { code }

code uses yield keyword to return each value in sequence,
often inside a loop

Can define generator methods in class definitions
precede method name with *

ex. to make instances iterable using a generator,
* [Symbol.iterator]() { code }

code would yield each value in the sequence

51

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Generator Methods
called on a generator object returned by a generator function

next(value) method

gets next value, similar to iterator next method

takes optional argument, but not on first call

specifies value that the yield hit in this call will return at start of processing for next call

return(value) method

terminates generator from the outside just as if the generator returned the specified value

returns {value: value; done: true}

throw(error) method

throws error inside generator at yield where execution paused

if generator catches error and yields a value, generator is not terminated yet

otherwise generator is terminated and this method returns
{value: undefined; done: true}

52

typically these methods
are not used directly

used on slide 58

used on slide 58

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Steps to Use Generators

1) Call generator function to obtain generator

2) Call generator next method to request next value

optionally pass a value that the generator can use,
possibly to compute subsequent value

but not on first call

after generator “yields” next value,
its code is “suspended” until next request

3) Process value
unless done property is true (typically)

4) Repeat from step 2
unless done property is true

53

When an iterator is used in a for-of loop
it performs steps 2 and 4.
Step 3 goes in loop body.

for (let v of someGenerator()) {
 // process v
}

call

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Basic Generator

54

function* myGenFn() {
 yield 1;
 yield 2;
 return 3;
}

let myGen = myGenFn();
console.log(myGen.next()); // {"value":1,"done":false}
console.log(myGen.next()); // {"value":2,"done":false}
console.log(myGen.next()); // {"value":3,"done":true}

for (let n of myGenFn()) {
 console.log(n); // 1, then 2, not 3
}

without return statement
in myGenFn, this disappears

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Infinite Generator

55

function* fibonacci() {
 let [prev, curr] = [0, 1];
 while (true) {
 [prev, curr] = [curr, prev + curr];
 yield curr;
 }
}

for (let value of fibonacci()) {
 if (value > 100) break;
 console.log(value);
}

1
2
3
5
8
13
21
34
55
89

compare to
slide 48

// Iterables can be
// implemented with generators.
let fib = {
 * [Symbol.iterator]() {
 let [prev, curr] = [0, 1];
 while (true) {
 [prev, curr] = [curr, prev + curr];
 yield curr;
 }
 }
};

for (let n of fib) {
 if (n > 100) break;
 console.log(n);
}

also see yield* to yield each value returned by an iterable one at a time;
can use to make recursive calls to the same or a different generator function

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Generators For Async ...

56

function double(n) {
 return new Promise(resolve => resolve(n * 2));
}

function triple(n) {
 return new Promise(resolve => resolve(n * 3));
}

function badOp(n) {
 return new Promise((resolve, reject) => reject('I failed!'));
}

function async(generatorFn) {
 let gen = generatorFn();
 function success(result) {
 let obj = gen.next(result);
 // obj.value is a promise
 // obj.done will be true if gen.next is called after
 // the last yield in workflow (on next slide) has run.
 if (!obj.done) obj.value.then(success, failure);
 }
 function failure(err) {
 let obj = gen.throw(err);
 // obj.value is a promise
 // obj.done will be false if the error was caught and handled.
 if (!obj.done) obj.value.then(success, failure);
 }
 success();
}

multiplies a given number
by 2 “asynchronously”

multiplies a given number
by 3 “asynchronously”

The magic! This obtains and waits for each of the promises
that are yielded by the specified generator function.
It is a utility method that would only be written once.
There are libraries that provide this function.

compare to
slide 59

called on
next slide

workflow6.js

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

... Generators for Async

57

async(function* () { // passing a generator
 let n = 1;
 try {
 n = yield double(n);
 n = yield triple(n);
 //n = yield badOp(n);
 console.log('n =', n); // 6
 } catch (e) {
 // To see this happen, uncomment yield of badOp.
 console.error('error:', e);
 }
});

Call multiple asynchronous functions in series
in a way that makes them appear to be synchronous.
This avoids writing code in the pyramid of doom style.

These yield promises that
the async function waits on
to be resolved or rejected.

This can be simplified with
new ES 2016 keywords!

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

What’s Next?

The next version is always referred to as “JS-next”

Currently that is ES 2016 (7th edition)

Will include
async and await keywords

type annotations (like TypeScript)

new Object method observe

array comprehensions

generator comprehensions

value objects - immutable datatypes for representing many kinds of numbers

more

58

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

async and await ...

New keywords
already supported by Babel and Traceur

Hides use of generators for managing async operations,
simplifying code

Replace use of yield keyword with await keyword
to wait for a value to be returned asynchronously

await can be called on any function

not required to be marked as async or return a Promise

Mark functions that use await with async keyword

59

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

 ... async and await

60

function sleep(ms) {
 return new Promise(resolve => {
 setTimeout(resolve, ms);
 });
}

async function double(n) {
 await sleep(50);
 return n * 2;
}

function triple(n) {
 return new Promise(resolve => resolve(n * 3));
}

function quadruple(n) {
 return n * 4;
}

function badOp() {
 return new Promise(
 (resolve, reject) => reject('I failed!'));
}

Can call multiple asynchronous functions
in series in a way that makes them
appear to be synchronous.
This avoids writing code in
the pyramid of doom style.

async function work() {
 let n = 1;
 try {
 n = await double(n);
 n = await triple(n);
 //n = await badOp(n);
 n = await quadruple(n);
 console.log('n =', n); // 24
 } catch (e) {
 // To see this happen,
 // uncomment await of badOp.
 console.error('error:', e);
 }
}

work();

async function

function that returns a promise

“normal” function

compare to
slides 55-56

runs in next turn
of event loop

Copyright © 2014-2015 by Object Computing, Inc. (OCI).
All rights reserved.

ES 2015

Summary

Which features of ES 2015 should you start using today?

I recommend choosing those in the intersection of
the set of features supported by Babel/Traceur and JSHint/ESLint

Includes at least these

61

arrow functions
block scope (const, let, and functions)

classes
default parameters
destructuring
enhanced object literals
for-of loops

iterators and iterables

generators
promises
rest parameters
spread operator
template literals
new methods in Array, Math,

Number, Object, and String classes

