
Writing API for XML
(WAX)

http://ociweb.com/wax/

R. Mark Volkmann
mark@ociweb.com

March 2009

WAX

Why?
Existing approaches to writing XML
suffer from one or both of these issues

require too much code

use too much memory

WAX addresses both!

Wanted an application to convert
“iTunes Music Library.xml” to more usable XML

mine is 8.7 MB

dict elements with key and “type” child elements

2

WAX

WAX Characteristics ...

Requires less code than other approaches

Uses less memory than other approaches
because it outputs XML as each method is called

rather than storing it in a DOM-like structure

and outputting it later

Doesn't depend on any Java classes
other than standard JDK classes

A small library (around 27K)

3

WAX

... WAX Characteristics ...

Writes all XML node types

Always outputs well-formed XML
or throws an exception

unless running in “trust me” mode

Provides extensive error checking

Automatically escapes special characters
in text and attribute values

unless “unescaped” methods are used

4

WAX

... WAX Characteristics

Allows most error checking to be
turned off for performance

Knows how to associate DTDs,
XML Schemas and XSLT stylesheets
with the XML it outputs

Well-suited for writing XML
request and response messages for
REST-based and SOAP-based services

5

WAX

Just a Root Element
To create this
<car/>

Do this
WAX wax = new WAX();

wax.start("car").end().close();

WAX constructor takes a String file path,
an OutputStream, a Writer, or nothing to write to System.out

end method terminates most recent start

close method

terminates all unterminated elements and closes output destination

makes explicit end call here unnecessary

6

WAX

Root Element with Text
To create this
<car>Prius</car>

Do this
WAX wax = new WAX();

wax.start("car").text("Prius").close();

7

WAX

Child Element with Text
To create this
<car>

 <model>Prius</model>

</car>

Do this
WAX wax = new WAX();

wax.start("car").start("model").text("Prius").close();

8

WAX

Same with child Method
To create this
<car>

 <model>Prius</model>

</car>

Do this
WAX wax = new WAX();

wax.start("car").child("model", "Prius").close();

child is a convenience method that is
equivalent to calling start, text and end

9

WAX

Text in a CDATA Section
To create this
<car>

 <model>

 <![CDATA[1<2>3&4'5"6]]>

 </model>

</car>

Do this
WAX wax = new WAX();

wax.start("car")

 .start("model").cdata("1<2>3&4'5\"6").close();

special characters in XML are
< > ' & "

10

WAX

XML Without Indenting
To create this
<car><model>Prius</model></car>

Do this
WAX wax = new WAX();

wax.noIndentsOrLineSeparators(); // same as setIndent(null)

wax.start("car").child("model", "Prius").close();

11

WAX

Indent With 4 Spaces
To create this
<car>

 <model>Prius</model>

</car>

Do this
WAX wax = new WAX();

wax.setIndent(" "); // can also call setIndent(4)

wax.start("car").child("model", "Prius").close();

Can pass to setIndent
null, a single tab, or 0-4 spaces

default is 2 spaces
12

WAX

Add Attributes
To create this
<car year="2008">

 <model>Prius</model>

</car>

Do this
WAX wax = new WAX();

wax.start("car").attr("year", 2008)

 .child("model", "Prius").close();

13

WAX

XML Declaration
To create this
<?xml version="1.0" encoding="UTF-8"?>

<car year="2008">

 <model>Prius</model>

</car>

Do this
WAX wax = new WAX(Version.V1_0); // Version is an enum

wax.start("car").attr("year", 2008)

 .child("model", "Prius").close();

14

WAX

Comments
To create this
<!-- This is a hybrid car. -->

<car year="2008">

 <model>Prius</model>

</car>

Do this
WAX wax = new WAX();

wax.comment("This is a hybrid car.")

 .start("car").attr("year", 2008)

 .child("model", "Prius").close();

15

WAX

Processing Instructions
To create this
<?target data?>

<car year="2008">

 <model>Prius</model>

</car>

Do this
WAX wax = new WAX();

wax.processingInstruction("target", "data")

 .start("car").attr("year", 2008)

 .child("model", "Prius").close();

16

WAX

XSLT Stylesheet Ref.
To create this
<?xml-stylesheet type="text/xsl" href="car.xslt"?>

<car year="2008">

 <model>Prius</model>

</car>

Do this
WAX wax = new WAX();

wax.xslt("car.xslt")

 .start("car").attr("year", 2008)

 .child("model", "Prius").close();

a special
processing instruction

17

WAX

Default Namespace
To create this
<car year="2008"

 xmlns="http://www.ociweb.com/cars">

 <model>Prius</model>

</car>

Do this
WAX wax = new WAX();

wax.start("car").attr("year", 2008)

 .defaultNamespace("http://www.ociweb.com/cars")

 .child("model", "Prius").close();

18

can’t specify namespaces
until a start tag has begun

WAX

Non-Default Namespaces
To create this
<c:car year="2008"

 xmlns:c="http://www.ociweb.com/cars">

 <c:model>Prius</c:model>

</c:car>

Do this
WAX wax = new WAX();

String prefix = "c";

wax.start(prefix, "car").attr("year", 2008)

 .namespace(prefix, "http://www.ociweb.com/cars")

 .child(prefix, "model", "Prius").close();

19

WAX

Associate an XML Schema
To create this
<car year="2008"

 xmlns="http://www.ociweb.com/cars"

 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

 xsi:schemaLocation="http://www.ociweb.com/cars car.xsd">

 <model>Prius</model>

</car>

Do this
WAX wax = new WAX();

wax.start("car").attr("year", 2008)

 .defaultNamespace("http://www.ociweb.com/cars", "car.xsd")

 .child("model", "Prius").close();

20

WAX

Multiple XML Schemas
To create this
<car year="2008"

 xmlns="http://www.ociweb.com/cars"

 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

 xmlns:m="http://www.ociweb.com/model"

 xsi:schemaLocation="http://www.ociweb.com/cars car.xsd

 http://www.ociweb.com/model model.xsd">

 <m:model>Prius</m:model>

</car>

Do this
WAX wax = new WAX();

wax.start("car").attr("year", 2008)

 .defaultNamespace("http://www.ociweb.com/cars", "car.xsd")

 .namespace("m","http://www.ociweb.com/model", "model.xsd")

 .child("m","model", "Prius").close();

21

WAX

Associate a DTD
To create this
<!DOCTYPE car SYSTEM "car.dtd">

<car year="2008"

 <model>Prius</model>

</car>

Do this
WAX wax = new WAX();

wax.dtd("car.dtd")

 .start("car").attr("year", 2008)

 .child("model", "Prius").close();

22

WAX

Entity Definitions & Use
To create this
<!DOCTYPE root [
 <!ENTITY oci "Object Computing, Inc.">
 <!ENTITY moreData SYSTEM "http://www.ociweb.com/xml/moreData.xml">
]>
<root>
 The author works at &oci; in St. Louis, Missouri.
 &moreData;
</root>

Do this
String url = "http://www.ociweb.com/xml/";
WAX wax = new WAX();
wax.entityDef("oci", "Object Computing, Inc.")
 .externalEntityDef("moreData", url + "moreData.xml")
 .start("root")
 .unescapedText(
 "The author works at &oci; in St. Louis, Missouri.", true)
 .unescapedText("&moreData;", true)
 .close();

23

text on a new line

WAX

Common Usage Pattern
Method in Car class
public void toXML(WAX wax) {
 wax.start("car")
 .attr("year", year)
 .child("make", make)
 .child("model", model)
 .end();
}

Sample output from car.toXML(wax)
<car year="2008">

 <make>Toyota</make>

 <model>Prius</model>

</car>

24

WAX

With Object Associations
Method in Address class
public void toXML(WAX wax) {
 wax.start("address")
 .child("street", street)
 .child("city", city)
 .child("state", state)
 .child("zip", zip)
 .end();
}

Method in Person class
public void toXML(WAX wax) {
 wax.start("person")
 .attr("birthdate", birthdate)
 .child("name", name);
 address.toXML(wax);
 wax.end();
}

Sample output from person.toXML(wax)
<person birthdate="4/16/1961">
 <name>R. Mark Volkmann</name>
 <address>
 <street>123 Some Street</street>
 <city>Some City</city>
 <state>MO</state>
 <zip>12345</zip>
 </address>
</person>

Alternatively, methods that take
a model object and a WAX object
can be added to another class
to avoid modifying model classes.

25

WAX

WAX Limitations
Only writes XML, doesn’t read it

for reading large XML documents
a pull-parser API such as StAX is recommended

Doesn’t validate that the XML it outputs
is valid according to some schema

Doesn’t automatically serialize/deserialize
Java beans to/from XML like XStream

XStream is great when a direct mapping is correct

26

WAX

Interface Chaining
Pattern ...

Methods that write part of the XML output
return the WAX object on which they are invoked
to support method chaining

Methods that configure WAX,
including setIndent and setTrustMe, do not

When method chaining is used, compile-time
type checking verifies that each successive call
is valid in the context of the previous call

for example, it's not valid to call attr
immediately after calling text

27

WAX

... Interface Chaining
Pattern ...

A novel approach suggested by Brian Gilstrap at OCI

WAX methods that return the WAX object
return it as one of many interface types
that are implemented by the WAX class
rather than the WAX class type

The interface returned describes only the
WAX methods that are valid to invoke next

Allows IDEs to flag invalid method chaining
call sequences as code is entered

28

WAX

... Interface Chaining
Pattern

Downside to method chaining
if a method in the chain throws an exception,
it may not be apparent which one threw it
since the chain could invoke
the same method multiple times

The following UML diagram conveys all the details

note interface types implemented by WAX class

most WAX methods specify one of these interfaces
as their return type

29

WAX

WAX
Class

Diagram

30

WAX

Bigger Example: XML
<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="artist.xslt"?>

<!DOCTYPE artist SYSTEM "http://www.ociweb.com/xml/music.dtd">

<artist name="Gardot, Melody"

 xmlns="http://www.ociweb.com/music"

 xmlns:date="http://www.ociweb.com/date"

 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

 xsi:schemaLocation="http://www.ociweb.com/music http://www.ociweb.com/xml/music.xsd

 http://www.ociweb.com/date http://www.ociweb.com/xml/date.xsd">

 <!-- This is one of my favorite CDs! -->

 <cd year="2008"/>

 <title>Worrisome Heart</title>

 <date:purchaseDate>4/3/2008</date:purchaseDate>

 </cd>

</artist>

associates with
an XSLT stylesheet

associates
with a DTD

associates with
two XML Schemas

It’s not normal to associate an XML document
with both a DTD and an XML Schema.

We’re just doing it to show how both work.

31

WAX

Bigger Example: Code
import com.ociweb.xml.WAX;

public class CDDemo {

 public static void main(String[] args) {
 WAX wax = new WAX(WAX.Version.V1.0); // writing to stdout

 wax.xslt("artist.xslt")
 .dtd("http://www.ociweb.com/xml/music.dtd")

 .start("artist")
 .attr("name", "Gardot, Melody")

 // "" signifies the default namespace
 .defaultNamespace("http://www.ociweb.com/music",
 "http://www.ociweb.com/xml/music.xsd")
 .namespace("date", "http://www.ociweb.com/date",
 "http://www.ociweb.com/xml/date.xsd")

 .comment("This is one of my favorite CDs!")
 .start("cd").attr("year", "2008")
 .child("title", "Worrisome Heart")
 .child("date", "purchaseDate", "4/3/2008")

 .close();
 }
}

32

WAX

Namespace Handling
WAX remembers
the namespace declarations that are in-scope
and verifies that
only in-scope namespace prefixes
are used on elements and attributes

33

WAX

Minimal Buffering
WAX writes out bits of XML as calls are made

it doesn't buffer up the data in a data structure
to be written out later,
as is done in the DOM approach

actually it does buffer data for five cases,
none of which involve a large amount of data

34

WAX

Five Cases of Buffering ...
1. Entity definitions, specified before the root element, are held in a list and

written out in a DOCTYPE just before the root element start tag is output.
This can’t be done until the root element name is known.
Once this is done, the list is cleared.

2. Associations between namespace URIs and XML Schema paths,
specified using the defaultNamespace and namespace methods, are held in a map.
This information is needed to construct
the value of the xsi:schemaLocation attribute.
After each start tag is completed, the map is cleared.

3. The names of unterminated ancestor elements are held in a stack.
This is needed so they can be properly terminated
when the end method is invoked, which pops one name off the stack.
The close method calls end for each name remaining on this stack
in order to terminate all unterminated elements.

35

WAX

... Five Cases of Buffering
4. All namespace prefixes used on the current element or its attributes

are held in a list.
When the start tag for the current element is closed,
all the prefixes in this list are checked to verify that
a matching namespace declaration is in scope.
This is necessary because a namespace can be defined on the
same element that uses the prefix for itself and/or its attributes.
After the prefixes are verified, the list is cleared.

5. The namespace prefixes that are defined for each element are held in a stack.
As each element is terminated, an entry is popped off this stack.
This is used to verify that all namespace prefixes
used on elements and attributes are in scope.

36

WAX

Well-formed Guarantee
WAX always outputs well-formed XML
or throws an exception

unless you are running in “trust me” mode or
forget to call the close method when finished

if an exception is thrown then
the tags already output may not be terminated

all exceptions thrown by WAX are runtime exceptions

IOExceptions are wrapped by RuntimeException

37

WAX

State Tracking ...
WAX keeps track of the current state of the document
in order to provide extensive error checking

There are four states:

1. IN_PROLOG - start tag for root element
hasn't been output yet

2. IN_START_TAG - start tag of current element
has been written, but the > or /> at the end hasn't
so attributes and namespace declarations can still be added

3. AFTER_START_TAG - A > has been written
at the end the start tag for the current element
so it's ready for content such as text and child elements

4. AFTER_ROOT - root element has been terminated;
only comments and processing instructions can be output now

38

WAX

... State Tracking ...
WAX uses the current state to determine
whether specific method calls are valid

for example, if the state is IN_PROLOG,
it doesn't make sense to call the attr method

attr adds an attribute to an element,
but you haven't written any elements yet
if you're still in the prolog section of the XML

39

WAX

... State Tracking
When the state is IN_START_TAG,
many methods trigger termination of the start tag

these include: cdata, child, close, comment,
end, processingInstruction, start and text

this happens because none of these things
can be written inside a start tag

methods that do not cause a start tag to be terminated
include: attr and namespace
because these are things that belong in a start tag

40

WAX

http://ociweb.com/wax/

41

WAX

Google Code

42

WAX

Ruby Version
http://www.ociweb.com/mark/programming/wax_ruby.html

To install
gem install wax

Example - compare to Java code on slide 32
require 'wax'

url = "http://www.ociweb.com"

WAX.write($stdout, "1.0") do

 xslt "artist.xslt"

 dtd "#{url}/xml/music.dtd"

 start "artist"

 attr "name", "Gardot, Melody"

 namespace "", "#{url}/music", "#{url}/xml/music.xsd"

 namespace "date", "#{url}/date", "#{url}/xml/date.xsd"

 comment "This is one of my favorite CDs!"

 start "cd"

 attr "year", 2008

 child "title", "Worrisome Heart"

 child "date", "purchaseDate", "4/3/2008"

end

From http://ociweb.com/wax/,

43

There is also
a C# version.

WAX

WAX On!
LGPL licensed

http://ociweb.com/wax/ contains
download link to Google Code

link to API documentation (javadoc)

video introduction (less than four minutes)

Java and Ruby WAX tutorials

inner details

comparisons to other approaches

44

