

 1

Schematron13 - 1Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Schematron

Schematroll, the
Schematron mascot

“Sounds like a particle accelerator for XML Schemas” – Marlon Burney

Schematron13 - 2Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Outline

Overview and Background
Basic Features
Advanced Features
New Features (not well supported yet)

Implementations

1

2

3

4

5

 2

Schematron13 - 3Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Overview

• Rule-based rather than grammar-based
– DTD, XML Schema and RELAX NG are all grammar-based
– grammar-based approaches take a closed approach

• everything not explicitly allowed is treated as invalid
– rule-based approaches take an open approach

• everything not explicitly disallowed is treated as valid

• Not typically the only validation method used
– use one grammar-based method for structure and value constraints
– use Schematron for constraints that can’t be described

in grammar-based methods
• such as constraints between multiple elements/attributes

and validation across documents (using document function)

• Designed by Rick Jelliffe
• Main web site: http://www.schematron.com

1

Schematron13 - 4Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Overview (Cont’d)

• Syntax is XML
– described by

• RELAX NG compact schema (Annex A)
• Schematron schema (Annex B) for constraints that RELAX NG can’t describe

• Rules use XPath expressions
– can validate anything that can be expressed

as a boolean XPath expression

• Rule location
– can be in a separate file, typically with a “.sch” extension
– can be embedded within other schema files, such as RELAX NG

• Implementations
– designed so that XSLT-based implementations are easy to create
– can also been implemented without using XSLT for better performance
– see list of implementations later

see XPath overview
on next page

1

 3

Schematron13 - 5Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

XPath Overview

• XPath is to XML what regular expressions are to strings
– result is a node set or a value (boolean, string or number)
– composed of “steps” separated by slashes
– steps navigate through XML hierarchy

• Step syntax
– axis::node-test[predicate-1]...[predicate-n]
– axis can be one of

• child, descendant, parent, ancestor, attribute, namespace,
following-sibling, preceding-sibling, following, preceding,
self, descendant-or-self, ancestor-or-self

• defaults to child when axis:: is omitted
– node-test can be one of

• an element name, * (for any element), node() (for any node), text(),
comment(), processing-instruction('pi-name')

– predicates are optional and each further reduces the result set

an XPath expression that begins
with “/” starts at “document root”;
makes it absolute instead of
relative to context node

1

many examples
will be shown later

Schematron13 - 6Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

XPath Overview (Cont’d)

• Supports a set of operators
– arithmetic: +, -, *, div, mod
– relational: =, !=, <, >, <= and >=
– boolean: and, or, not()
– node-set union: |

• Supports a set of functions
– string functions include:

concat(value1, value2, ...)
contains(value, substring)
format-number(value, format)
starts-with(value, substring)
string-length([value])
substring(value, start[, length])
substring-after(value, substring)
substring-before(value, substring)

– math functions include:
count(node-set)
sum(node-set)

many examples of
XPath expressions
will be shown later

1

 4

Schematron13 - 7Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

XPath Examples

• Use XML Spy to practice writing XPath expressions
– start XML Spy
– open labs/Schematron/MusicCollection/music-collection.xml
– on the XML menu, select “Evaluate XPath…”
– Enter the following XPath expressions

• To see the root element, /*
• To see the direct children of the root element, /music-collection/*
• To see the name of every artist, /music-collection/artist/name
• To see the name of all artists whose name begins with “C”,

/music-collection/artist[starts-with(name, 'C')]/name

• To see the year of every CD, //cd/@year
• To see the title of all CDs from 1993, //cd[@year=1993]/title
• To verify the number of CDs from 1993, count(//cd[@year=1993]) = 5

1

Schematron13 - 8Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Document Schema Definition Languages
(DSDL)

• DSDL is defined by ISO/IEC 19757
– “The main objective of DSDL is to bring together different

validation-related tasks and expressions to form a single
extensible framework that allows technologies to work in series
or in parallel to produce a single or a set of validation results.”

• don’t have to use one schema language
to perform all the validation on a given document

– see http://dsdl.org/

• Schematron is undergoing standarization as one part of this
– “Rule-based validation – Schematron” – part 3

• see http://dsdl.org/0524.pdf

1

 5

Schematron13 - 9Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Document Schema Definition Language
(Cont’d)

• Other parts include
– “Regular-grammar-based validation – RELAX NG” – part 2
– “Namespace-based Validation Dispatching Language – NVDL” – part 4

• allows validation to be dispatched to a different schema
for each namespace used in a document

– “Data types” – part 5
• such as XML Schema data types

– “Path-based Integrity Constraints” – part 6
• such as XPath

1

Schematron13 - 10Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Main Concepts

• Assertions
– conditions to be tested such as

existence and values of elements/attributes

• Rules
– groups of assertions (assert and report elements)
– selects the set of context nodes under which they are evaluated

• Patterns
– groups of rules with an id (used by phases)
– each node being tested will only be used as the context node

of a single rule within the pattern (more on page 18)

• Phases
– named groups of patterns (specified by their id)

that allow evaluating only the rules in those patterns

2

 6

Schematron13 - 11Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Schema

• All elements of a Schematron schema are
wrapped in a schema root element

• Example

<?xml version="1.0"?>

<schema xmlns="http://www.ascc.net/xml/schematron">
 <title>schema title goes here</title>
 <ns prefix="prefix" uri="namespace-uri"/>

 ... phases go here ...

 ... patterns go here ...

 ... diagnostics go here ...

</schema>

can have any number of these;
the prefixes are used in
rule element context attributes and
assert/report element test attributes

optional; not used by ref. impl. or Jing

patterns contain rules;
rules contain assert and report elements

in latest spec. the Schematron namespace is
http://purl.oclc.org/dsdl/schematron, but the
ref. impl. and Jing still require this previous namespace

2

Schematron13 - 12Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Validation Steps
(not necessarily in this order)

For each context node in the document being validated
For each phase being evaluated

For each pattern in the phase
Find the first rule that matches the context node

 For each assert and report in the rule
Perform the test
If an assert test fails or a report test passes

Output the message inside it
If diagnostics are enabled
and there are associated diagnostics

Output the diagnostic messages

if phases aren’t used then
all patterns are evaluated

2

diagnostics provide
information beyond
messages in assert and
report elements such as
actual/expected values and
hints to repair the document

 7

Schematron13 - 13Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Order

• Only the order of rule elements is significant
– for each context node,

only the first matching rule within a pattern is used

• The order of other things is implementation dependent
– order in which context nodes are validated
– order in which phases are evaluated
– order in which patterns within a phase are evaluated
– order in which asserts and reports within a rule are tested

2

Schematron13 - 14Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Assertions

• Conditions to be tested such as
– existence of elements/attributes
– values of elements/attributes

• Positive assertions
– specified with <assert test="boolean-xpath">message</assert>
– message is output if test evaluates to false

• Negative assertions
– specified with <report test="boolean-xpath"/>message</report>
– message is output if test evaluates to true

2

 8

Schematron13 - 15Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Assertions (Cont’d)

• name element
– used in messages to output name of context node being tested
– doesn’t output namespace prefixes or URIs
– optional path attribute is used to output

the name of a node found relative to the context node
• for example, <name path="*[1]"/>

outputs name of first child element of context node
– see example on page 20

• value-of element
– used in messages to output the value of other nodes

found relative to the context node being tested
• allowed in assert, report and diagnostic elements

– some implementations, such as Jing 20030619,
only support value-of in diagnostic elements

– see example on page 27

In both the ref. impl. and Jing,
value-of seems to only be
able to get values of attributes!

2

Schematron13 - 16Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Rules

• Groups of assertions
• Selects set of context nodes under which they are evaluated
• Syntax

<rule context="xpath">
 ... assertions go here ...

</rule>

• Example
<rule context="candidates">
 <assert test="sum(candidate/@percentage) = 100">
 The sum of the percentage attributes for each candidate

 must be 100.

 </assert>

 <report test="count(candidate) < 2">
 There must be at least two candidate elements inside candidates.

 </report>

</rule>

XML document to be validated
<root>
 ...
 <candidates>
 <candidate name="John Doe" percentage="51"/>
 <candidate name="Joe Blogs" percentage="49"/>
 </candidates>
 ...
</root>

2

 9

Schematron13 - 17Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Rules (Cont’d)

• One rule per pattern is evaluated
– for each node being tested,

the first rule within a pattern that matches it
is the only one within that pattern
that will be evaluated

2

Schematron13 - 18Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Patterns
• Groups of rules

– ordered so the first matching rule is the one that should be used

• Can choose to test only the rules within specified patterns
– using “phases” (described next)

• Syntax
<pattern name="pattern-name" [id="pattern-id"]>
 ... rules go here ...

</pattern>

• Example
<pattern name="artist rules" id="artists">
 <rule context="artist[@vocals='female']">
 ... assertions specific to artists with female vocals go here

...

 </rule>

 <rule context="artist">
 ... assertions for all other artists go here ...

 </rule>

</pattern>

used to refer to the
pattern from a phase

2

 10

Schematron13 - 19Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Music Collection XML
<?xml version="1.0" encoding="UTF-8"?>

<music-collection xmlns="http://www.ociweb.com/music">
 <owner>Mark Volkmann</owner>
 <artist type="solo" vocals="female">
 <name>Yamagata, Rachel</name>

 <cd category="pop" year="2004">

 <title>Happenstance</title>

 </cd>

 </artist>
 <artist type="group" vocals="male">
 <name>Cake</name>

 <cd category="pop" year="1996">

 <title>Fashion Nugget</title>

 </cd>

 <cd category="pop" year="1998">

 <title>Prolonging The Magic</title>

 </cd>

 </artist>
</music-collection>

2

Schematron13 - 20Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Music Collection Schema
<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.ascc.net/xml/schematron">
 <title>Music Collection Schema</title>

 <ns prefix="m" uri="http://www.ociweb.com/music"/>

 <pattern name="all">

 <rule context="/">
 <assert test="m:music-collection">
 Root element must be music-collection.

 </assert>

 </rule>

 <rule context="m:music-collection">
 <assert test="count(m:owner) = 1">
 The element <name/> must have one owner child element.

 </assert>

 <assert test="count(*) = count(m:owner|m:artist)">
 The only valid child elements of <name/> are owner and artist.

 </assert>

 </rule>

This example demonstrates using Schematron to
validate everything about an XML document
except child element order.

Typically a grammar-based schema language would
be used to validate structure/value constraints.

In that case, Schematron would only be used
to validate things that can’t be described
in a grammar-based language, such as
constraints between multiple elements/attributes.

phases aren’t used
the only
pattern

2

 11

Schematron13 - 21Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Music Collection Schema (Cont’d)
 <rule context="m:artist">
 <assert test="parent::m:music-collection">
 The parent of <name/> elements must be music-collection.

 </assert>

 <assert test="count(*) = count(m:name|m:cd)">
 The only valid child elements of <name/> are name and cd.

 </assert>

 <assert test="count(m:name) = 1">
 The element <name/> must have one name child element.

 </assert>

 <assert test="@type">
 The element <name/> requires a type attribute.

 </assert>

 <assert test="@vocals">
 The element <name/> requires a type attribute.

 </assert>

 <assert test="count(@*) = count(@type|@vocals)">
 The only valid attributes of <name/> are type and vocals.

 </assert>

2

Schematron13 - 22Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Music Collection Schema (Cont’d)
 <assert test="@type='solo' or @type='group'">
 The type attribute of the <name/> element

 must have a value of "solo" or "group".

 </assert>

 <assert test="@vocals='female' or @vocals='male' or
 @vocals='mixed' or @vocals='none'">
 The vocals attribute of the <name/> element

 must have a value of "female", "male", "mixed" or "none".

 </assert>

 </rule>

2

 12

Schematron13 - 23Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Music Collection Schema (Cont’d)
 <rule context="m:cd">
 <assert test="parent::m:artist">
 The parent of <name/> elements must be artist.

 </assert>

 <assert test="count(m:title) = 1">
 The element <name/> must have one title child element.

 </assert>

 <assert test="count(*) = count(m:title)">
 The only valid child element of <name/> is title.

 </assert>

 <assert test="@category">
 The element <name/> requires a category attribute.

 </assert>

 <assert test="count(@*) = count(@category|@import|@year)">
 The only valid attributes of <name/> are category, import and year.

 </assert>

2

Schematron13 - 24Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Music Collection Schema (Cont’d)
 <assert test="@category='alternative' or
 @category='classical' or
 @category='country' or
 @category='folk' or
 @category='jazz' or
 @category='pop' or
 @category='rock' or
 @category='other'">
 The category attribute of the <name/> element

 must have a value of "alternative", "classical",

 "country", "folk", "jazz", "pop", "rock" or "other".

 </assert>

 <assert test="not(@import) or @import='true' or @import='false'">
 The import attribute of the <name/> element

 must have a value of "true" or "false".

 </assert>

 <report test="@year < 1990 or @year > 2010">
 The year attribute of a <name/> element

 must be between 1990 and 2010.

 </report>

 </rule>

2

 13

Schematron13 - 25Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Music Collection Schema (Cont’d)
 <rule context="m:name">
 <assert test="parent::m:artist">
 The parent of <name/> elements must be artist.

 </assert>

 <assert test="count(*) = 0">
 The element <name/> doesn't contain child elements.

 </assert>

 </rule>

 <rule context="m:owner">
 <assert test="parent::m:music-collection">
 The parent of <name/> elements must be music-collection.

 </assert>

 <assert test="count(*) = 0">
 The element <name/> cannot contain child elements.

 </assert>

 <assert test="count(preceding-sibling::*) = 0">
 The <name/> element must be the first child element its parent.

 </assert>

 </rule>

2

Schematron13 - 26Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Music Collection Schema (Cont’d)
 <rule context="m:title">
 <assert test="parent::m:cd">
 The parent of <name/> elements must be cd.

 </assert>

 <assert test="count(*) = 0">
 The element <name/> cannot contain child elements.

 </assert>

 </rule>

 <rule context="*">
 <report test="true()">
 The element <name/> is not a valid element of the music namespace.

 </report>

 </rule>

 </pattern>

</schema>

catches all nodes not matched by
previous rules within the current pattern

2

 14

Schematron13 - 27Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Diagnostics

• Optional descriptions of validation errors
that provide information beyond what is in
assert/report messages
– such as actual/expected values and hints to repair the document

• Also useful when the same diagnostic message is desired
for multiple assert/report elements

• Example
<diagnostics>
 <diagnostic id="artistDetail">
 in artist named <value-of select="name"/>

 with vocals of <value-of select="@vocals"/>

 </diagnostic>

</diagnostics>

• Implementations aren’t required to support these

a child of schema that
follows phase elements

evaluated relative to
current context node

spec. doesn’t say whether
these messages should be
output before or after
message in assert/report
(in Jing it is after)

2

to include line breaks under Windows,
use 

Schematron13 - 28Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Diagnostics (Cont’d)

• Referred to by assert and report elements
– using a space-separated list of diagnostic element ids

in the diagnostics attribute
– example

<assert test="boolean-xpath"
diagnostics="artistDetail">message</assert>

• Diagnostic messages are only output if enabled
– details are implementation specific
– with reference implementation

• set “diagnose” stylesheet parameter to “yes”
when generating new stylesheet from schema and ref. impl. XSLT

• when running Xalan from command line, add “-PARAM diagnose yes”
– with Jing

• add “-d” command-line option

support for diagnostics seems
to be broken in the ref. impl.

2

 15

Schematron13 - 29Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Checking For Duplicates -
the XML

<movies xmlns="http://www.ociweb.com/movies">
 <movie>
 <title>Elf</title>

 <actor name="Will Ferrell" role="Buddy"/>
 <actor name="James Caan" role="Walter"/>

 <actor name="Bob Newhart" role="Papa Elf"/>

 <actor name="Edward Asner" role="Santa"/>

 <actor name="Mary Steenburgen" role="Emily"/>

 <actor name="Zooey Deschanel" role="Jovie"/>

 <actor name="Mark Volkmann" role="Buddy"/>
 <actor name="Edward Asner" role="Mr. Grant"/>

 </movie>

</movies>

duplicate

2

Schematron13 - 30Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Checking For Duplicates -
the schema

<schema xmlns="http://www.ascc.net/xml/schematron">
 <ns prefix="m" uri="http://www.ociweb.com/movies"/>

 <pattern name="all">
 <rule context="m:actor">
 <report test="@role=preceding-sibling::m:actor/@role"
 diagnostics="duplicateActorRole">
 Duplicate role!

 </report>

 </rule>

 </pattern>

 <diagnostics>
 <diagnostic id="duplicateActorRole">
 More than one actor plays the role <value-of select="@role"/>.

 A duplicate is named <value-of select="@name"/>.

 </diagnostic>

 </diagnostics>

</schema>

this actor can’t play
the same role as any that
is a sibling (in same movie)
and comes before it

2

can get name of first actor playing the role, “Will Ferrell” in this case, with
<value-of select="preceding-sibling::m:actor[./@role = @role]/@name"

 16

Schematron13 - 31Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Lab #1

• Setup
– copy labs\Schematron from the instructor PC to your directory

• Create an XML document that
conforms to a given Schematron schema

• Steps
– study movies.sch
– rename the solution from movies.xml to solution.xml
– create your own movies.xml

that conforms to the supplied movies.sch
– validate by running the supplied script jing.bat

• What does this schema do
that other schema languages cannot?
– verifies that no two actors have the same name
– verifies that no two actors play the same role

The schema requires the
elements in the XML document
to be in a certain namespace.
Declare this as the default
namespace on the root element.

The Windows executable version of
Jing used for the RELAX-NG labs
doesn’t support Schematron, but the
Java JAR version in this directory does.

contains a couple of validation errors just
to demonstrate that the schema is working

Schematron13 - 32Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Lab #2
• Write your own Schematron schema that

validates cards in a poker hand
– for root element hand

• has no attributes
• contains five card elements
• has no other elements

– for each card
• parent is hand
• has rank and suit attributes
• has no other attributes
• has no child elements
• validate suit – heart, diamond, club or spade
• validate rank – 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King or Ace
• check for duplicate cards - can’t do this until we have support for XPath 2!

<report test="concat(@rank,@suit)=

 preceding-sibling::card/concat(@rank,@suit)"

 diagnostics="duplicateCard"/>

Example XML document

<hand>
 <card rank="King" suit="heart"/>
 ...
</hand>

see test for valid vocals
attribute on page 22

 17

Schematron13 - 33Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Lab #2 (Cont’d)

• Steps
– rename the solution from hand.sch to solution.sch
– create your own hand.sch
– validate the supplied XML document hand.xml

by running the supplied script jing.bat

The elements in the XML document
are not in any namespace,
so the schema doesn’t need to
map a prefix to a namespace
with an ns element or use prefixes
on elements in test attributes.

Schematron13 - 34Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Abstract Rules

• Rules can be abstract, in which case they have no context
– example

<rule abstract="true" id="team">
 ... assertions that apply to all kinds of teams ...

</rule>

– abstract rules require an id attribute
– non-abstract rules require a context attribute

• either have no abstract attribute or abstract="false"

• Rules can extend abstract rules to add their assertions
– extends element is replaced by content of referenced rule
– example

<rule context="homeTeam">
 <extends rule="team"/>
 ... can add more assertions here ...

</rule>

vistingTeam rule would also
extend the team abstract rule
(see example on page 35)

3

 18

Schematron13 - 35Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Allowed Values From Document -
the XML documents

<teams>
 <team name="Bills"/>
 <team name="Dolphins"/>
 <team name="Patriots"/>
 <team name="Jets"/>
 <team name="Ravens"/>
 <team name="Bengals"/>
 <team name="Browns"/>
 <team name="Steelers"/>
 <team name="Texans"/>
 <team name="Colts"/>
 <team name="Jaguars"/>
 <team name="Titans"/>
 <team name="Broncos"/>
 <team name="Chiefs"/>
 <team name="Raiders"/>
 <team name="Chargers"/>
 <team name="Cowboys"/>
 <team name="Giants"/>
 <team name="Eagles"/>
 <team name="Redskins"/>
 <team name="Bears"/>
 <team name="Lions"/>
 <team name="Packers"/>
 <team name="Vikings"/>
 <team name="Falcons"/>
 <team name="Panthers"/>
 <team name="Saints"/>
 <team name="Buccaneers"/>
 <team name="Cardinals"/>
 <team name="Rams"/>
 <team name="49ers"/>
 <team name="Seahawks"/>
</teams>

teams.xml -
used to check for
valid team namesschedule.xml

<schedule xmlns="http://www.ociweb.com/football">
 <game date="12/27/2004" time="9ET">
 <homeTeam name="Rams"/>
 <visitingTeam name="Eagles"/>
 </game>
</schedule>

3

Schematron13 - 36Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Allowed Values From Document -
the schema

<schema xmlns="http://www.ascc.net/xml/schematron">
 <ns prefix="f" uri="http://www.ociweb.com/football"/>

 <pattern name="all">
 <rule context="f:homeTeam">
 <extends rule="team"/>
 </rule>

 <rule context="f:visitingTeam">
 <extends rule="team"/>
 </rule>

 <rule abstract="true" id="team">
 <assert test="@name = document('teams.xml')//team/@name"
 diagnostics="badTeamName">
 An invalid team name was found.

 </assert>

 </rule>

abstract rule

the name attribute
must match some
team element
name attribute
in teams.xml

3

 19

Schematron13 - 37Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Allowed Values From Document -
the schema (cont’d)

 <rule context="f:game">
 <report test="f:homeTeam/@name = f:visitingTeam/@name"
 diagnostics="listTeams">
 A team can't play itself.

 </report>

 </rule>

 </pattern>

 <diagnostics>
 <diagnostic id="badTeamName">
 <value-of select="@name"/> is not a valid team name.

 </diagnostic>

 <diagnostic id="listTeams">
 Home team is <value-of select="f:homeTeam/@name"/>.

 Visiting team is <value-of select="f:visitingTeam/@name"/>.

 </diagnostic>

 </diagnostics>

</schema>

3

Schematron13 - 38Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Phases

• Optional, named groups of patterns
• Can evaluate only the rules of specific patterns

instead of evaluating all rules in all patterns
– by specifying a phase id

• Options for specifying the phase to evaluate include
– command-line option
– selection in a GUI
– parameter in API call

• Syntax
<phase id="phase-id">
 <active pattern="pattern-id"/>
 ... more active elements go here ...
</phase>

in most cases it will be
desirable to evaluate
all the patterns

3

 20

Schematron13 - 39Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Let

• Used to define variables
that can be used in XPath expressions

• Syntax
– <let name="name" value="value"/>

• Can appear as a child of
schema, phase, pattern or rule
– when a child of rule, it is evaluated relative to the rule context
– otherwise it is evaluated relative to document root

• Example
<rule context="box">
 <let name="volume" value="width * length * height"/>
 <assert test="$volume > 10">box has insufficient volume</assert>
</rule>

The ref. impl. and Jing
do not support this!

4

Schematron13 - 40Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Abstract Patterns

• Patterns can be abstract
– allows a set of rules to be parameterized

to support reuse for similar XML structures

• Patterns can incorporate rules of abstract patterns
– using is-a attribute and param child elements
– allows one pattern to “inherit” the assertions of another

The ref. impl. and Jing
do not support this!

4

 21

Schematron13 - 41Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Abstract Patterns (Cont’d)
example XML

<root>

 <table>
 <tr>
 <th>Player</th> <th>Number</th>
 </tr>
 <tr>
 <td>Wayne Gretzky</td> <td>99</td>
 </tr>
 </table>
 <worksheet>
 <row>
 <cell>Player</cell> <cell>Number</cell>
 </row>
 <row>
 <cell>Wayne Gretzky</cell> <cell>99</cell>
 </row>
 </worksheet>
</root>

the table and worksheet
elements have similar structure

The ref. impl. and Jing
do not support this!

4

Schematron13 - 42Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Abstract Patterns (Cont’d)
example schema

<schema xmlns="http://www.ascc.net/xml/schematron">

 <pattern abstract="true" id="table">
 <rule context="$table">
 <assert test="$row">tables must contain row elements</assert>
 </rule>

 <rule context="$row">
 <assert test="$entry">rows must contain entry elements</assert>
 </rule>

 </pattern>

 <pattern is-a="table" id="html">
 <param name="table" value="table"/>
 <param name="row" value="tr"/>
 <param name="entry" value="th|td"/>
 </pattern>

 <pattern is-a="table" id="spreadsheet">
 <param name="table" value="worksheet"/>
 <param name="row" value="row"/>
 <param name="entry" value="cell"/>
 </pattern>

</schema>

The ref. impl. and Jing
do not support this!

4

 22

Schematron13 - 43Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Implementations

• Reference implementation - Schematron 1.5
– free from Academia Sinica Computing Centre

• http://xml.ascc.net/schematron/1.5/
– implemented as an XSLT stylesheet

• Jing
– free from James Clark

• http://www.thaiopensource.com/relaxng/jing.html
– supports RELAX NG and Schematron

• Topologi Schematron Validator
– commercial from topologi - $495

• http://www.topologi.com/
• Rick Jelliffe is C.T.O. of this company

– supports DTD, Schematron, RELAX NG and XML Schema

5

jing-20030619.zip

Schematron13 - 44Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Implementations (Cont’d)

• ZVON Schematron - based on XSLT

• 4Suite - from FourThought; for Python

• XML::Schematron - from Kip Hampton; for Perl

• Xmlform - from Ivelin Ivanov; for C++

• Schematron.NET - from Daniel Cazzulino; for .NET

se
e

ht
tp

://
xm

l.a
sc

c.
ne

t/s
ch

em
at

ro
n/

fo
r U

R
Ls

 o
f t

he
se

5

 23

Schematron13 - 45Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Using an XSLT-based Implementation

• The reference implementation is based on XSLT
– see skeleton1-5.xsl

• Steps to use
– apply implementation XSLT to Schematron schema to produce new XSLT
– apply new XSLT to an instance document to output validation errors

• Can use Xalan from a script
java org.apache.xalan.xslt.Process

 -IN mySchema.sch
 -XSL skeleton1-5.xsl
 -OUT generated.xslt
java org.apache.xalan.xslt.Process

 -IN myDocument.xml
 -XSL generated.xslt
 -TEXT

on a single line

on a single line

Schematron
schema

instance
document

schemaimpl. XSLT

generated
XSLT

error messages

XML
document

5

Schematron13 - 46Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Using Jing

• Everything needed is in a single Java Archive (JAR) file
– must install Java

• Command-line usage
set JING_HOME=/XML/Jing/jing-20030619

java -cp %JING_HOME%/bin/jing.jar

 [-d]

 [-p phase-id]

 com.thaiopensource.relaxng.util.Driver

 schematron-schema-name.sch document-name.xml

• Can also be used from Java applications
– Java API for RELAX Verifiers (JARV)

• see http://iso-relax.sourceforge.net/JARV/
• not well supported by Jing yet

– native API
• see example on next page

on a single line
enables diagnostics

5

 24

Schematron13 - 47Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Jing Native API

• Java code to validate against a Schematron schema

import com.thaiopensource.validate.ValidationDriver;

...

ValidationDriver driver = new ValidationDriver();

driver.loadSchema(ValidationDriver.fileInputSource(schemaPath));

boolean valid =

 driver.validate(ValidationDriver.fileInputSource(xmlPath));

5

Schematron13 - 48Copyright © 2002-2007 by Object Computing, Inc. (OCI).
All rights reserved.

Summary

• Schematron can validate things that
can’t be validated in other XML schema languages

• Effective use of Schematron requires
becoming proficient with XPath

• Use it in conjunction with
DTD, XML Schema or RELAX NG

