
CoffeeScript
“a little language that compiles into JavaScript”

Mark Volkmann
Object Computing, Inc.

CoffeeScript

Main Benefits ...

Only exposes the “good parts” of JavaScript
no == or != which perform type coercions

no accidental creation of global variables

each source file has its own scope

compiled output is wrapped in a function

Less verbose than JavaScript
requires about one-third less code

eliminates many noise characters - { } () ; function

and eliminates JavaScript issue with missing semicolons

function bodies and blocks are indicated with indentation instead of braces

Can use all JavaScript libraries
such as jQuery and Node.js

Generates code that passes JavaScript Lint
http://www.javascriptlint.com

2

doesn’t check indentation

CoffeeScript

... Main Benefits

Mostly one-to-one mapping to JavaScript code
uses standard JavaScript objects

Array, Date, Function, Math, Number, Object, RegExp, String

exception handling is same

try, catch, throw

generated code is very readable

no loss in performance

Can mix CoffeeScript and JavaScript
though this isn’t typically needed

surround JavaScript code with back-ticks

can span multiple lines

All expressions have a value
even if statements and loops

Easier to model classes and inheritance

3

CoffeeScript

Brief History

Created by Jeremy Ashkenas
first released on 12/25/2009

Compiler
original written in Ruby

rewritten in CoffeeScript and released in March 2010

4

CoffeeScript

Endorsed By

Brendan Eich - Mozilla
creator of JavaScript

“CoffeeScript is well done and more convenient to use than JS,
provided you buy into the Python-esque significant space and
the costs of generating JS from another source language.
But semantically it’s still JS.”

“CoffeeScript is smart and fun new clothing for JavaScript. Clothes are important,
and I’d be the first to proclaim that JavaScript needs wardrobe help.”

“I believe CoffeeScript and other front ends for JS have a bright future”

working on adding what he considers the good parts of CoffeeScript
into Harmony, a future version of JavaScript

http://brendaneich.com/2011/05/my-jsconf-us-presentation/

David Heinemeier Hanson - 37signals
creator of Ruby on Rails web framework

“Enter CoffeeScript: a pre-compiler that removes all the unnecessary verbosity of JavaScript
and simply makes it a pleasure to write and read”

“Yes, it's true, Rails 3.1 is going to ship with CoffeeScript and SCSS in the box ... It's bad ass.”

5

in a sense, the compile step
just takes the place of running
a lint tool on JavaScript code
which is recommended

CoffeeScript

Installing

Install Node.js

Install Node Package Manager (npm)

Install CoffeeScript

verify install by running coffee -v

to update later, npm update -g coffee-script

6

git clone https://github.com/joyent/node.git
cd node
./configure
make
sudo make install

curl http://npmjs.org/install.sh | sudo sh

sudo npm install -g coffee-script

because the coffee tool
runs on top of Node.js

because CoffeeScript is
bundled as a Node package

CoffeeScript

Editor Support

Provides
syntax highlighting

smart indentation

compilation shortcuts

See list at
https://github.com/jashkenas/coffee-script/wiki/Text-editor-plugins

Includes
Cloud9IDE

Emacs

Intellij IDEA

NetBeans

TextMate

Vim - adds :CoffeeCompile and :CoffeeRun commands

7

CoffeeScript

Running

Start REPL with coffee

ctrl-d to exit

Run a script with coffee file-path

file extension defaults to .coffee

Get help on command-line options with coffee -h

-c for compile

-w for watch

-o to specify output directory

and many more

Can compile all .coffee files under a given directory
to .js files in another, maintaining directory structure

coffee -cwo js cs

continuously compiles modified .coffee files under cs directory
and writes generated .js files under js directory

coffee -cwo . .

for .coffee and .js files under current directory

8

to enter multi-line statements,
terminate all but last with a backslash

CoffeeScript

Comments

Single-line start with #

Multi-line are preceded by a line containing ###
and followed by the same

convenient for alternating between contiguous sections of code

9

CoffeeScript

New Operators

Relational operators
is instead of ===

isnt instead of !==

10

Other operators
? - existential operator (described later)

in - tests whether a given value is in an array

of - tests whether a given property is in an object

Logical operators
not instead of !

and instead of &&

or instead of ||

and= instead of &&=

or= instead of ||=

Ternary operator replaced
instead of
condition ? true-value : false-value
write
if condition then true-value else false-value

x or= y assigns y to x
only if x has no value
(also see “soaks” later)

x and= y assigns y to x
only if x has a value

CoffeeScript

Strings

Double-quoted strings can use interpolation

can have any expression inside ${ }

Single-quoted strings cannot use interpolation

Multiline strings can be created using three quote characters on each end
can use interpolation if double-quote characters are used

great for generating HTML

11

wife = 'Tami'
letter = """
 Dear #{wife},
 Do I need to pick up milk on the way home?

 Your loving husband #{name}
"""

name = 'Mark'
console.log "Hello, #{name}"

removes white space from beginning of lines
equal to number of whitespace characters
at beginning of first line;
doesn’t include a newline after last line

CoffeeScript

Statement Modifiers

Can add these modifiers to the end of statements
if condition

unless condition

while condition

until condition

12

n = 3
console.log n if n > 0
console.log n unless n > 5
console.log(n--) until n is 0
console.log(n++) while n < 3

Output:
3
3
3
2
1
0
1
2

CoffeeScript

Defining and Calling Functions

Syntax to define is name = (parameters) -> code

for example, a function to cube a number

cube = (n) -> Math.pow n, 3

great syntax for implementing callbacks!

note the use of the JavaScript Math object and the lack of parens and curly braces

Syntax to call is name arguments or name(arguments)
arguments are separated by commas

for example, cube n

need parens if no arguments; otherwise it is interpreted as
a reference to the function object, not a call to it

Implicitly returns value of last expression

Multi-line function definitions
use whitespace to indent; convention is 2 spaces

13

odds = (numbers) ->
 result = []
 for n in numbers
 result.push n if n % 2 is 1
 result

functions must be defined
before they are called!

just like in JavaScript functions,
all arguments can be accessed
using the array-like
arguments object

CoffeeScript

Function Definition Order

Function definitions must appear before they are called
this works fine

14

f = (n) ->
 console.log 'in f'
 g(n - 1) if n > 0

g = (n) ->
 console.log 'in g'
 f(n - 1) if n > 0

f 5

CoffeeScript

Default Parameter Values

Function parameters can have default values
not just on parameters at end

pass null to take default value for parameters not at end

15

distance defaults to marathon.
time defaults to one hour.
calculatePace = (distance = 26.2, time = 60) -> time / distance

console.log calculatePace 3.1, 17.6 # 5K in 17.6 minutes
console.log calculatePace 8 # 8 miles in 1 hour
console.log calculatePace null, 180 # marathon in 3 hours
console.log calculatePace() # wow, that’s fast!

// generated JavaScript

var calculatePace;

calculatePace = function(distance, time) {

 if (distance == null) {

 distance = 26.2;

 }

 if (time == null) {

 time = 60;

 }

 return distance / time;

};

CoffeeScript

Splats

Used in parameter lists to collect a variable number of arguments
into a real JavaScript array

alternative to using arguments object

Only one parameter can use splats,
but it doesn’t have to be the last one

Can also be used in a function call
to expand an array into individual arguments

16

sumEndsAndMiddle = (first, middle..., last) ->
 [first + last, middle.reduce (a, b) -> a + b]

console.log sumEndsAndMiddle(1, 2, 3, 4, 5) # [6, 9]

distance = (x1, y1, x2, y2) ->
 Math.sqrt(Math.pow(x2 - x1, 2) + Math.pow(y2 - y1, 2))
point1 = [3, 4]
point2 = [1, 5]
console.log distance(point1..., point2...) # 2.236

CoffeeScript

Simulating Named Parameters

Write function to accepted an object

Pass key/value pairs in a literal hash
braces not needed

17

f = (params) ->
 console.log params.name if params.name

f color: 'yellow', name: 'Mark', number: 19

f
 color: 'yellow'
 name: 'Mark'
 number: 19

CoffeeScript

Chained Comparisons

Can use more than one relational operator without a logical operator

Instead of ...

Can write ...

18

validDiceRoll = x > 0 and x <= 6

validDiceRoll = 0 < x <= 6

CoffeeScript

Equality

JavaScript has many operators for testing equality
some perform type coercions and using them is discouraged

== and != perform type coercions; === and !== do not

CoffeeScript avoids this confusion
instead of ===, use is

instead of !==, use isnt

unfortunately CoffeeScript supports == and !=,
but changes their meaning to be the same as === and !== in JavaScript
which is confusing!

avoid those and always use is or isnt

19

CoffeeScript

Property Access

Properties of an object are accessed just like in JavaScript
dot notation - object.property

bracket notation - object['property']

Inside a function where this refers to the object

can use @property

20

CoffeeScript

JSON ...

CoffeeScript supports an alternative, indented style of JSON

Instead of ...

Can write ...

21

person = {
 name: 'Mark Volkmann',
 address: {
 street: '123 Some Street',
 zip: 12345
 }
}

person =
 name: 'Mark Volkmann'
 address:
 street: '123 Some Street'
 zip: 12345

can be on one line
if the content of
each of these lines
is separated by commas

Can be tricky when passing to a function!
Entries that overflow a line
cannot have indentation.

This doesn’t parse.
f name: 'Mark'
 number: 19

These do parse.
f name: 'Mark', number: 19

f
 name: 'Mark'
 number: 19

f name: 'Mark'
number: 19 # not preferred!

CoffeeScript

... JSON

Can omit JSON keys if each of these is true
keys are valid names

values are in variables with same names as keys

braces are used

22

name = 'Mark Volkmann'
phone = '123-456-7890'
info = { name, phone }
equivalent to the following
info = {
 name: name,
 phone: phone
}

CoffeeScript

Soaks ?

Can write expressions that succeed even when
the value of a variable is null or undefined,
a function returns null,
or an object doesn’t have a given method

Use ? operator, also referred to as the existential operator

23

pujols = {}
pujols.swing = -> 'home run'
carpenter = {}
players =
 'Pujols': pujols
 'Carpenter': carpenter

Object found and has swing method.
console.log players['Pujols']?.swing?() # home run
Object found but doesn't have swing method.
console.log players['Carpenter']?.swing?() # undefined
Object not found.
console.log players['Molina']?.swing?() # undefined

Another Use
x ?= y
assigns y to x
only if x doesn’t
already have a value
(same as x or= y)

CoffeeScript

Ranges

Can create arrays containing ranges of consecutive numbers
(syntax borrowed from Ruby)

Inclusive upper bound - [start..end]

Exclusive upper bound - [start...end]

bounds must be integers, not variables

Examples
[2..5] gives [2, 3, 4, 5]

[2...5] gives [2, 3, 4]

Can create ranges that go backwards
[5..2] gives [5, 4, 3, 2]

[5...2] gives [5, 4, 3]

Ranges can be used to “slice” values from arrays and strings
s = 'abcdef'; s[2..4] gives 'cde'

24

start can be
greater than end

CoffeeScript

Iteration ...

Over array values

Over object properties

Each of the for lines above can end with when condition

filters out iterations where condition evaluates to false

alternative to wrapping loop body in an if statement

25

for [own] key of object
 # use key

for [own] key, value of object
 # use key and value

for value in array [by step]
 # use value

using the own keyword is equivalent
to wrapping the loop body in
if object.hasOwnProperty(key)

for n in [1..100] when n % 3 is 0
 # process multiples of 3

key and value are variables
in the current scope,
not scoped to the for loop

step can be negative
only if the array was
created by a range

CoffeeScript

... Iteration

Can call a function on each iteration value in an array

While loop

Endless loop
only escape with break or return

26

function(value) for value in array [by step]

i = 3
loop
 console.log i
 break if i is 0
 i--

s = 'test'
while s.length
 console.log s.substr(0, 1)
 s = s.substr 1

CoffeeScript

Collection Content Testing

in and of are also operators that evaluate to a boolean value

To determine whether an array contains a given value,
value in array

To determine whether an object contains a given property,
property of object

property can be the name of a function

27

console.log 4 in [1, 4, 7] # true

obj =
 foo: 1
 bar: 2
console.log 'bar' of obj # true

CoffeeScript

Comprehensions

The value of each kind of loop is an array containing
the value of the last expression in the body
for each iteration

Comprehensions are another way to specify
the value to be collected from each iteration

works with any kind of loop: for, while, until and loop

28

squares = for n in [1..3]
 compute? n # a no-op since function doesn’t exist
 n * n
console.log squares # [1, 4, 9]
squares = n * n for n in [1..3] # same

console.log n * 2 for n in [1..10] when n % 3 is 0
[6, 12, 18]

CoffeeScript

Pattern Matching

Provides an easy way to extract values from an array or object

A.k.a. destructuring

Can be used to swap values

Even works when
arrays and objects are nested
inside each other to any depth

29

obj =
 name: 'Mark Volkmann'
 address:
 street: '123 Street'
 zip: 12345

{name: n, address: {street: s, zip: z}} = obj
console.log "The person at #{s} is #{n}."

{name, address: {street, zip}} = obj
console.log "The person at #{street} is #{name}."

x = 1
y = 2
[x, y] = [y, x]
console.log "x=#{x}, y=#{y}"

values = ['St. Louis', 'Cardinals', 'baseball']
[city, team, sport] = values
console.log "The #{team} play #{sport} in #{city}."

in JavaScript 1.7 and
already implemented
in Firefox

CoffeeScript

Adding Methods to a Prototype

obj::x is the same as obj.prototype.x

30

// generated JavaScript
String.prototype.startsWith = function(prefix) {
 return new RegExp("^" + prefix).test(this);
};
console.log("foobar".startsWith("foo"));
console.log("barbaz".startsWith("foo"));

// CoffeeScript
String::startsWith = (prefix) ->
 new RegExp("^#{prefix}").test this

console.log 'foobar'.startsWith('foo')
console.log 'barbaz'.startsWith('foo')

Output
true
false

CoffeeScript

Classes

Classes in CoffeeScript are compiled to a
common JavaScript pattern for modeling them

JavaScript refresher
global variables are actually properties of the “root object”

window in browsers, global in Node.js

constructors are functions whose name, by convention, starts uppercase

objects are created by calling a constructor with the new keyword

methods are added to a “class” by assigning them to the prototype object of the constructor function object

31

// JavaScript
Rocket = function () {};
Rocket.prototype.launch = function () {
 console.log('3, 2, 1, Blast Off!');
};
var r1 = new Rocket();
r1.launch();

// CoffeeScript
Rocket = ->
Rocket::launch = ->
 console.log '3, 2, 1, Blast Off!'
r1 = new Rocket
r1.launch()

CoffeeScript

CoffeeScript Classes

32

class Rocket
 constructor: (@name) ->
 @launchCount = 0 # object variable
 Rocket.count++ # class variable
 launch: ->
 console.log "#{@name} 3, 2, 1, Blast Off!"
 @launchCount++ # object variable
 report: ->
 console.log "#{@name} was launched #{@launchCount} time(s)"
 @count = 0 # class variable

r1 = new Rocket 'Helicat'
r2 = new Rocket 'Eggscaliber'
r1.launch(); r2.launch(); r1.launch()
console.log "#{Rocket.count} rockets were created"
r1.report(); r2.report()

when a constructor parameter name starts with @,
it is automatically assigned to
an object variable with the same name

can only have one constructor

@ is the same as this
@x is the same as this.x

Output
Helicat 3, 2, 1, Blast Off!
Eggscaliber 3, 2, 1, Blast Off!
Helicat 3, 2, 1, Blast Off!
2 rockets were created
Helicat was launched 2 time(s)
Eggscaliber was launched 1 time(s)

CoffeeScript

Generated JavaScript

33

var Rocket, r1, r2;
Rocket = (function() {
 function Rocket(name) {
 this.name = name;
 this.launchCount = 0;
 Rocket.count++;
 }
 Rocket.prototype.launch = function() {
 console.log("" + this.name +
 " 3, 2, 1, Blast Off!");
 return this.launchCount++;
 };
 Rocket.prototype.report = function() {
 return console.log("" + this.name +
 " was launched " + this.launchCount + " time(s)");
 };
 Rocket.count = 0;
 return Rocket;
})();

r1 = new Rocket('Helicat');
r2 = new Rocket('Eggscaliber');
r1.launch();
r2.launch();
r1.launch();
console.log("" + Rocket.count +
 " rockets were created");
r1.report();
r2.report();

CoffeeScript

Class Inheritance

Utilizes the prototype chain of objects, just like JavaScript

Call super anywhere inside a constructor or method
to call corresponding thing in superclass

with no parens or arguments, all arguments passed to it are passed on to superclass method

instanceof operator

can be used to test whether an object is an instance of a given class
or one that extends from a given class

34

class AdvancedRocket extends Rocket
 constructor: (name, @stages) ->
 super name + '!'
 launch: ->
 super
 for stage in [2..@stages]
 console.log("fire stage #{stage}");

r3 = new AdvancedRocket 'Epplin', 3
r3.launch()

The generated JavaScript for this is
NOT code you’d want to write yourself!

Output
Epplin! 3, 2, 1, Blast Off!
fire stage 2
fire stage 3

CoffeeScript

“Fat Arrow”

=> instead of -> to define a function

Fixes value of this inside the function to its current value

Useful for defining callback functions
inside constructors or instance methods
that need to refer to instance variables
or call instance methods

Example using Node.js

35

events = require 'events'
class Alarm extends events.EventEmitter
 constructor: (ms) ->
 setTimeout (=> @.emit 'ring'), ms

alarm = new Alarm 1000
console.log 'alarm set'
alarm.on 'ring', -> console.log 'alarm rang'

need a better example that
shows notification of listeners
when instance state changes

CoffeeScript

switch Statement

Uses when instead of case and else instead of default

like in Ruby

Each when can be followed by a comma-separated list of values

No colon after value(s)
can use then keyword to place code on same line

Implicit break at end of code for each when

can’t fall through

Result of last expression evaluated is returned
can assign a switch statement to a variable

36

level = switch r3.stages
 when 1 then 'basic'
 when 2, 3 then 'advanced'
 when 4, 5, 6 then 'crazy'
 else 'highly unlikely'
console.log "level of #{r3.name} is #{level}"

level = switch r3.stages
 when 1
 'basic'
 when 2, 3
 'advanced'
 when 4, 5, 6
 'crazy'
 else
 'highly unlikely'

same code spread across more lines

CoffeeScript

Debugging

Currently a challenge
compiler stops on first line it can’t parse

gives line number and a message that sometimes doesn’t accurately describe the issue

gives a stack trace into the compiler

expected to improve in the future

line numbers in stack traces refer to lines in generated JavaScript,
not lines in CoffeeScript source

code displayed in debugger of browsers (like Firebug)
is the generated JavaScript

Being addressed
Mozilla and WebKit teams are working on adding support for debugging
CoffeeScript and other JS-based languages in their browsers (Firefox, Chrome and Safari)

http://www.infoq.com/news/2011/08/debug-languages-on-javascript-vm/

Can use
console.assert

a Node.js logging module or node-inspector for server-side code

37

CoffeeScript

Runtime Compilation in Browsers

CoffeeScript compiler can be downloaded as part of web page
<script src="coffee-script.js"></script>

get from http://jashkenas.github.com/coffee-script/extras/coffee-script.js

Allows CoffeeScript files to be referenced directly
instead of pre-compiling them to JavaScript

<script src="whatever.coffee"></script>

Fine for development ... too slow for production use
but may want to run compiler to check for syntax errors anyway
before testing in browser

In Chrome
may need to start browser with -allow-file-access-from-files option
if .coffee files are local instead of being served via HTTP

38

CoffeeScript

Runtime Compilation in Node.js

Can call require on a CoffeeScript file
if require('coffee-script') has been called

don’t need to specify .coffee file extension

39

This is a Node module written in CoffeeScript.
exports.shoutOut = -> console.log 'Hello from CoffeeScript!'

// This is a JavaScript Node client that uses the module.
require('coffee-script');
var mine = require('./mine');
mine.shoutOut();

mine.coffee

client.js

run with "node client"

CoffeeScript

Running as Scripts

On Unix-like systems, if first line is proper “shebang”,
can run like a shell script

looks for coffee executable in PATH

file must have execute privilege

the file below is named “script”

run with ./script

40

#!/usr/bin/env coffee
console.log 'The script ran!'

CoffeeScript

Won’t JS Skill Be Lost?

Ability to read JS won’t be affected much
syntax is somewhat close

still use same methods on same core objects

Array, Date, Function, Math, Number, Object, RegExp, String

still need to learn about JS libraries that will be used with CoffeeScript
so will be continually reading example JS code

Ability to write JS will be affected more
but can write in CoffeeScript and
compile to JS to see equivalent, good JS

41

CoffeeScript

Resources

Books
CoffeeScript: Accelerated JavaScript Development

Trevor Burnham, Pragmatic Programmers, 2011

Websites
main - http://jashkenas.github.com/coffee-script/

see “TRY COFFEESCRIPT” tab that allows
entering CoffeeScript code in browser and
viewing generated JavaScript as you type!

style guide - https://github.com/polarmobile/coffeescript-style-guide

Code School - http://coffeescript.codeschool.com/

42

