Clojure

dynamic, functional programming
for the JVM

“It (the logo) was designed by my brother, Tom Hickey. “It | wanted to involve ¢ (c#), | (lisp) and j (java).

| don't think we ever really discussed the colors Once | came up with Clojure, given the pun on closure,
representing anything specific. | always vaguely the available domains and vast emptiness of the
thought of them as earth and sky.” - Rich Hickey googlespace, it was an easy decision..” - Rich Hickey

|
Mark Volkmann
mark@ociweb.com

OBJECT COMPUTING, INC.

Functional Programming (FP)

i S In the spirit of saying OO is
e e e encapsulation, inheritance
and polymorphism ...

® Pure Functions
® produce results that only depend on inputs, not any global state

L4 do not have side effects such as Real applications need some
changing global state, file I/O or database updates sjde effects, but they should be

; : clearly identified and isolated.
® First Class Functions

® can be held in variables

® can be passed to and returned from other functions

® Higher Order Functions

® functions that do one or both of these:

[accept other functions as arguments and execute them zero or more times
. return another function

... FPis ...

Closures O
main use Is to pass

® special functions that retain access to variables a block of code
that were in their scope when the closure was created to a function

Partial Application

® ability to create new functions from existing ones that take fewer arguments
Currying

® transforming a function of n arguments into a chain of n one argument functions

Continuations

® ability to save execution state and return to it later think browser
back button

OBjECT CoMPUTING, INC.

... FP is

® |mmutable Data
® after data is created, it can’t be changed
made efficient with
® new versions with modifications are created instead | persistent data structures

® some FP languages make concessions, but immutable is the default

® |azy Evaluation
® ability to delay evaluation of functions until their result is needed

e useful for optimization and implementing infinite data structures

® Monads

® manage sequences of operations to provide
control flow, null handling, exception handling, concurrency and more

OBjECT CoMPUTING, INC.

... FP is

® Pattern Matching

® ability to specify branching in a compact way
based on matching a value against a set of alternatives

® A sizeable learning curve,
but worth the investment!

Popular FP Languages

Clojure Ml
Erlang OCaml
F# Scala
RENG Scheme

Lisp

Concurrency

® Wikipedia definition

e "Concurrency is a property of systems in which
several computations are executing and overlapping in time,
and potentially interacting with each other.
The overlapping computations may be executing on
multiple cores in the same chip,
preemptively time-shared threads on the same processor,
or executed on physically separated processors."

® Primary challenge

® managing access to shared, mutable state

Why Functional Programming?

® Easier concurrency

® immutable data doesn’t require locking for concurrent access

® Simpler code
® pure functions are easier to write, test and debug

® code is typically more brief

Why Not Java?

® Mutable is the default ook bt st

developers won’t be able to
. . remember all the advice
® not as natural to restrict changes to data as in FP languages and apply it correctly.

An easier way to develop

® Concurrency based on locking is hard cepenTe S2e S panied

® requires determining which objects need to be locked and when

® these decisions need to be reevaluated when
the code is modified or new code is added

e if a developer forgets to lock objects that need to be locked
or locks them at the wrong times, bad things can happen

[includes deadlocks (progress stops) and race conditions (results depend on timing)

® if objects are locked unnecessarily, there is a performance penalty

® Verbose syntax

Why Clojure? ... [&dhe

e Concurrency SUPPOFt
® reference types (Vars, Refs, Atoms and Agents)
. mutable references to immutable data

® Software Transactional Memory (STM) used with Refs

® Immutability support

® Clojure-specific collections: list, vector, set and map
J all are immutable, heterogeneous and persistent

® persistent data structures provide
efficient creation of new versions that share memory

...Why Clojure! ...

® Sequences

® a common logical view of data including
Java collections, Clojure collections, strings, streams,
trees (including directory structures and XML)

® supports lazy evaluation of sequences

® Runs on JVM (Java 5 or greater)

® provides portability, stability, performance and security

® Java interoperability

® can use libraries for capabilities such as
I/O, concurrency, database access, GUIs, web frameworks and more

...Why Clojure!?

® Dynamically typed

® Minimal, consistent, Lisp-based syntax
® casy to write code that generates code
e differs from Lisp in some ways to simplify and support Java interop.

® all operations are one of
J special forms (built-in functions known to compiler)
J functions

o macros

® Open source with a liberal license

Clojure Processing

® Read-time
® reads Clojure source code
® creates a data structure representation of the code
® Compile-time
® expands macro calls into code
® compiles data structure representation to Java bytecode
® can also compile ahead of time (AOT)
® Run-time

® executes bytecode

Code Comparison

Java method call This is referred to as a “form”.
It uses prefix notation.

DethodName(argly sxg2 Jargs); This allows what are binary operators in other

: g languages to take any number of arguments.
CIolure function call Other than some syntactic sugar,

(fFunction-name argl arg? arg3) «—— EYERYTHING in Clojure looks like this!
This includes function/macro definitions,

Java method definition function/macro calls, variable bindings

and control structures.
public void hello(String name) {

System.out.println("Hello, " + name) ;

}

Clojure function definition

(defn hello [name]

(println "Hello," name))

Syntactic Sugar

® See http://ociweb.com/mark/clojure/article.html#Syntax

Purpose Sugar Function

; text 3t t text) mMacro

lcomment .
for line comments for block comments

icharacter literal (uses Java chax type)

charz ...}
string (uses Java String objects) "text" concatenates characters and many other kinds of
values to create a string.

keyword; an interned string; keywords with the same name refer to
the same object; often used for map keys

(keyword "name")

keyword resolved in the current namespace none

regular expression quoting rules differ from function (re-pattern pattern)
form

treated as whitespace; sometimes used in collections to aid

readability » (a comma) |N,'A

" (items) (list items)

list - similar to a linked list .
evaluates items

lvector - similar to an array em. (vector items)

P key-valu
and more on the web page

OBjECT CoMPUTING, INC.

Provided Functions/Macros

® See http://ociweb.com/mark/clojure/ClojureCategorized.html

Clojure Categorized

The following table categories Clojure functions, macros and special forms.

Category Functions/Macros

arrays - general aclone aget alength amap areduce aset into-array make-array to-array to-array-2d

arrays - type-specific aset-boolean aset-byte aset-char aset-double aset-float aset-int aset-long aset-short double-array float-array int-array long-array

bindings binding declare def defonce if-let let with-local-vars

bitwise operations bit-and bit-and-not bit-clear bit-flip bit-not bit-or bit-set bit-shift-left bit-shift-right bit-test bit-xor

Clojure code access load load-file load-reader load-string loaded-libs require source use

compiling compile gen-class gen-interface

conditional logic cond condp if if-let when when-first when-let when-not

conversions bigdec bigint boolean byte char double float int long num short

databases resultset-seq

exception handling catch finally throw throw-if try

functions comp complement constantly declare defn defn- fn partial

multimethods defmethod defmulti prefer-method remove-method

and more on the web page

OBjECT CoMPUTING, INC.

Pig Latin in Java

public class PigLatin ({

public static String pigLatin(String word) {
char firstletter = word.charAt(0) ;
if ("aeiou".indexOf (firstLetter) != -1) return word + "ay";

return word.substring(l) + firstLetter + "ay":;

public static void main(String args[]) {
System.out.println(pigLatin("red")) ;
System.out.println(piglLatin("orange")) ;

Pig Latin in Clojure

(def vowel? (set "aeiou"))

(defn pig-latin [word]

(let [first-letter (first word)]
(if (vowel? first-letter)
(str word "ay")

(str (subs word 1) first-letter "ay"))))

(println (pig-latin "red"))

Don’t have to count parens
to match them.

Editors and IDE plugins

do this for you.

(println (pig-latin "orange"))

Getting Started

See http://ociweb.com/mark/clojure/article.html#GettingStarted
Download latest code from Subversion
Build using Ant

Create a clj script
® starts a read-eval-print loop (REPL)
e standard tool used by Lisp dialects to experiment with code
runs Clojure source files (.clj extension)
adds frequently used JARs to classpath
adds editing features using rlwrap or JLine

adds use of a startup script for other customizations

19

REPL Session ...

$ clj starts REPL session

user=> default namespace is “user”

user=> (def x 2) defines aVar named x with a value of 2

#'user/x string representation of the Var

user=> (* x 3 4) multiplies x by 3 and 4

24 result

user=> (load-file "src/demo.clj") loads given source file making its definitions available

user=> (find-doc "reverse") prints documentation for all functions that contain the given strin
P! 4 g
in their name or documentation string

OBjECT CoMPUTING, INC.

... REPL Session

user=> (doc reverse)

clojure.core/reverse
([coll])
Returns a seq of the items in coll in reverse order. Not lazy.
nil
user=> (source reverse)
(defn reverse
"Returns a seq of the items in coll in reverse order. Not lazy."
[coll]
(reduce conj () coll))
nil
user=> (reverse [1 2 3])
(321)
user=> ctrl-d exits REPL; use ctrl-z Enter on Windows

$

Symbols & Keywords

® Symbols
® used to name bindings (variables), functions, macros and namespaces
® scoped in namespaces

® evaluate to their value
e Keywords
® names that begin with a colon

® act as unique identifiers

® often used as keys in maps

Bindings ...

e Global

® create and modify with def

® ex. (def year 20009)

® Thread-local
® create by binding global bindings to a new value
® ex. (binding [year 2010] ...)

visible in body of binding and
in functions called from it within the current thread

... Bindings

® |ocal
e function parameters - ex. (defn leap? [year]
® let bindings - ex. (let [year 2009] ...)
e visible in body of 1et, but not in functions called from it

® other forms also create bindings

. doseq,dotimes, for,if-let,when-first,when-let,with-open

Conditional Forms

(if condition then-expr else-expr)

(if-let [name expression] then-expr else-expr)
(when condition expressions)

(when-not condition expressions)

(when-let [name expression] expressions)
(when-first [name expression] expressions)

(cond
testl resultl test2 result2 ... [true default-result])

(condp fn argl
arg2-1 resultl arg2-2 result2 ... [default-result])

lteration Forms

® Basic
e (dotimes [name number-expr] expressions)
e (while test-expr expressions)

® List comprehension
® doseq - described ahead

® for - described ahead

® Recursion
® loop/recur - for single recursion without call stack growth; see next slide

® trampoline - for mutual recursion without call stack growth (rarely used)

loop / recur ...

Converts what would otherwise be a tail recursive call
to a loop that doesn’t consume stack space
loop

® creates initial bindings and establishes a recursion point

recur

® returns to the recursion point with new bindings

containing function definition
® also establishes a recursion point

® can use recur without 1oop to recur to beginning of function

... loop / recur

® Example

(loop [m 2 n 0]
(println m n)
(when-not (zero? m)

(recur (dec m) (inc n))))

e Output

20
ab-ak
0 2

List Comprehension ...

® [terates through one or more sequences

® Two types
e for returns a lazy sequence of results

® doseq forces evaluation for side effects; returns nil
e Specify filtering with : when and :while

® using :when causes only items that meet a condition to be processed

® using :while causes iteration to stop
when an item is reached that fails the condition

List Comprehension

(def cols "ABCD")
(def rows (range 1 4))

(doseq [col cols :when (not= col \B)

row rows :while (< row 3)] OUtPUt from both:

(println (str col row))) Al

A2

(dorun Cl

(for [col cols :when (not= col \B) Cc2

row rows :while (< row 3)] D1

(println (str col row)))) D2

Clojure Collections

® Four types
® list, vector, set and map

® all are immutable, heterogeneous and persistent

® Many functions operate on all types

® retrieve a single item

. first fnext second nth last ffirst peek

® retrieve multiple items
. butlast drop drop-last drop-while filter next nnext nthnext
pop remove rest rseq rsubseq subseq take take-nth take-while
® other

() apply cache-seq concat conj cons count cycle distinct doall dorun empty
fnseq iterate interleave interpose into lazy-cat lazy-cons map mapcat
partition range repeat repeatedly replace replicate reverse seq seque
sort sort-by split-at split-with tree-seq

31

... Clojure Collections ...

® Lists
® ordered collections of items
® can add to and remove from front efficiently
create with (list ...)or "(...)

use peek and pop to treat like a stack

... Clojure Collections ...

® Vectors
® ordered collections of items
® can add to and remove from back efficiently
create with (vector ...)or [...]
can retrieve items with (get vector-name index)

can create a new version with (assoc vector-name index expr)

... Clojure Collections ...

® Sets

® unordered collections of unique items

e cfficiently test whether an item is contained with
(contains? set-name item) or (set-name item)

create with (hash-set ...) or (sorted-set ...)or#{...}
create new version with item added with (conj set-name new-item)
create new version with item removed with (disj set-name old-item)

clojure. set namespace defines the functions
difference, intersection,union and more

... Clojure Collections ...

® Maps
® collections of key/value pairs
® keys and values can be any kinds of objects
can efficiently retrieve values associated with keys with (map-name key)
create with (hash-map ...) or (sorted-map ...)or{...}
create new version with pairs added with (assoc map-name k1 vi1
create new version with pairs removed with (dissoc map-name key ...

efficiently determine if an item is contained with
(contains? map-name key) or (map-name key)

get a sequence of all keys with (keys map-name)
get a sequence of all values with (vals map-name)

35

... Clojure Collections

(def m {:jan 4 :apr 2 :sep 3})
(m :apr) -> 2

® More on Maps (tapr m) -> 2
® maps are functions of their keys for retrieving values
® some types of keys are functions of maps for retrieving values
values can be maps, nested to any depth

retrieve values of nested keys with
(get-in map-name [kl k2 ...]) or (-> map-name k1 k2 ...

created new map with changed value for a nested key with
(assoc-in map-name [kl k2 ...] new-value)

do the same where new value is computed from old value with
(update-in map-name [kl k2 ...] update-fn args)

StructMaps ...

® Similar to regular maps, but optimized

® to take advantage of common keys in multiple instances
so they don't have to be repeated

® can create accessor functions that are faster than ordinary key lookups
® Use is similar to that of Java Beans

® proper equals and hashCode methods are generated for them
o Keys

® are normally specified with keywords

® new keys not specified when StructMap was defined can be added to instances

® keys specified when StructMap was defined cannot be removed from instances

... dStructMaps

® Two ways to define

L] (def car-struct (create-struct :make :model :year :color))

° (defstruct car-struct :make :model :year :color)

® To create an instance

® values must be specified in the same order as
their corresponding keys were specified when the StructMap was defined

values for keys at the end can be omitted and their values will be nil

(def car (struct car-struct "Toyota" "Prius" 2009))

Defining Functions

(defn fn-name
"optional documentation string"
[parameters]
expressions)

e defn- for private functions
® can only be called from other functions in the same namespace
® Can take a variable number of
e after required parameters,add & and a name to hold sequence of remaining

® ex. (defn calculate [nl n2 & others] ...)

Anonymous Functions

Typically passed to other functions
Two ways to define

Named parameters

® (fn [parameters] expressions)

® example: (fn [nl n2] (/ (+ nl n2) 2))
Unnamed parameters

® | (expression)

® arguments are referenced with %, %1, %2, ...

® example: #(/ (+ %1 %2) 2))

Overloading on Arity

® A function definition can have more than one
argument list and a body for each

(defn parting

([1 (parting "World"))
([name] (parting name "en"))
([name language]
(condp = language
"en" (str "Goodbye, " name)
"es" (str "Adios, " name)
(throw (IllegalArgumentException.
(str "unsupported language " language))))))

Overloading on Other

y polymorphism
® Multimethods | gone wild!

(defmulti name dispatch-function)
names must match
(defmethod name dispatch-value [parameters]
expressions)

parameters are passed to dispatch-function
and result is compared to dispatch values

® Example

(defmulti what-am-i class)

(defmethod what-am-i Number [arg] (println arg "is a Number"))
(defmethod what-am-i String [arg] (println arg "is a String"))
(defmethod what-am-i :default [arg] (println arg "is something else"))
(what-am-i 19)

(what-am-i "Hello")

(what-am-i true)

Polynomial Example ...

(defn polynomial [2 1 3] describes 2x%2 + x + 3.
Its derivative is 4x + 1.

[coefs x]

(let [exponents (reverse (range (count coefs)))]

(apply + (map #(* %1 (Math/pow x %2)) coefs exponents))))

... Polynomial Example

(defn derivative

[coefs x]

(let [exponents (reverse (range (count coefs)))
derivative-coefs (map #(* %1 %2) (butlast coefs) exponents)]

(polynomial derivative-coefs x)))

(def £ (partial polynomial [2 1 3]))
(def f-prime (partial derivative [2 1 3]))

(println "£(2) =" (£ 2))
(println "f'(2) =" (f-prime 2))

Macros

® Expanded into code at read-time

® Don’t have to evaluate all arguments

(defmacro around-zero [number negative-expr zero-expr positive-expr]l | number could be
‘' (let [number# ~number] an expression
(cond
(< (Math/abs numberi#) le-15) ~zero-expr number# is an auto-gensym
(pos? number#) ~positive-expr that avoids conflicts
true ~negative-expr))) with other symbol names.
It will expand to a value like
(around-zero 0.1 number__l 9__auto__
(do (log "really cold!") (println "-"))
(println "0")
(println "+"))

® Test expansion with macroexpand-1

45

Concurrency

® |[mperative approach (Java, C/C++, Ruby, Python, ...)
® variables refer to mutable objects
® memory is directly read and written

® requires “stopping the world” with locks to read or write consistent state

® Clojure approach
® name (symbol) -> identity (reference type) -> immutable value
® reference types note the extra layer of indirection

J provide mutable references to immutable objects
o can change to refer to a different immutable value
[include Var, Ref, Atom and Agent

. reading (dereference) and writing (only with special functions) is managed and atomic

46

Var Reference Type

Primarily used for constants

Secondarily used for global bindings that may need
different, thread-local values

Create with (def name initial-value)

Change with

(def name new-value) - sets new root value

(alter-var-root (var name) update-fn args) - atomically sets new root value
to the return value of update-£fn which is passed the current value and additional arguments

(set! name new-value) - sets new, thread-local value inside a binding form

Software Transactional
Memory (STM) ... G

on this on 9/1/09
® Overview

® “a concurrency control mechanism analogous to database transactions
for controlling access to shared memory” - Wikipedia

® based on ideas from snapshot isolation

J “a guarantee that all reads made in a transaction
will see a consistent snapshot of the database,
and the transaction itself will successfully commit
only if no updates it has made conflict with
any concurrent updates made since the snapshot.” - Wikipedia

® based on ideas from multiversion concurrency control (MVCC)
J “... provides each user connected to the database with
a “snapshot” of the database for that person to work with.

Any changes made will not be seen by other users of the database
until the transaction has been committed.” - Wikipedia

OBjECT CoMPUTING, INC.

Database transactions
have the ACID properties.

I M Atomic
XX} XX Consistent

Isolated
Durable

® STM transactions

® blocks of code that read and/or write shared memory (Refs in Clojure)

® inside a transaction, Refs have a private, in-transaction value
(makes them isolated)

. intermediate states are not visible to other transactions

all changes to Refs made inside a transaction are either committed or rolled back
so when the transaction ends, the Ref values are in a consistent state
(makes them consistent)

all changes to Refs appear to occur at a single instant
when the transaction commits (makes them atomic)

changes to Refs are lost if the application crashes (makes them not durable)

.STM ...

® Optimistic
® threads don’t have to wait for access to shared resources

® provides increased concurrency, especially for Ref reads

® Rollbacks

® triggered by exceptions

® triggered if another transaction commits changes
to memory that was read or written in this transaction

all writes are discarded and the transaction is
retried from the beginning until it succeeds

J so shouldn’t do anything in a transaction that can’t be undone, such as I/O

one way to handle is to log the desired I/O and perform it once after the transaction completes

“action” that is sent to an Agent inside the transaction.

Another way to handle this is to perform the I/O in an
It will only be executed once during the commit. J

..9TM

® Pros

® simplifies code, making it easier to write and maintain

. don’t have to think about what data must be locked in each piece of code

in order to avoid deadlock, livelock, but do have to decide

what code should be
don’t have to reason about thread interactions in the entire application wrapped in a transaction!

e Cons

® typically slower than lock-based concurrency with 4 or fewer processors

[due to overhead of logging reads/writes and committing writes

“Imagine an STM where each ref had a unique locking number and a revision,
no locks were taken until commit, and then the locks were taken in locking
number order, revisions compared to those used by the transaction, abort if
changed since used, else increment revisions and commit. Deadlock-free and
automatic. It ends up that no STM works exactly this way, but it is an example
of how the deadlock-free correctness benefit could be delivered simply.”

- Rich Hickey

51

“Clojure's STM and agent mechanisms
are deadlock-free.”

“The STM uses locks internally,

but does lock-conflict detection

and resolution automatically.”

- Rich Hickey

Ref Reference Type ...

® Ensures that changes to one or more bindings
are coordinated between multiple threads

® can only be modified inside a transaction

[don’t have to remember to think about thread safety since
an exception will be thrown if an attempt is made to modify a Ref outside a transaction

® implemented using Software Transactional Memory (STM)
® transactions are demarcated by calls to the dosync macro

J don’t have to specify which Refs will be read or written

] locking in languages like Java requires specifying which objects must be locked

... Ref Reference Type

® While in a transaction ...

® if an attempt is made to read or write a Ref
that has been modified in another transaction
that has committed since the current transaction started (a conflict),
the current transaction will retry up to 10,000 times

retry means it will discard all its in-transaction changes
and return to the beginning of the dosync body

no guarantees about when a transaction will detect a conflict
or when it will begin a retry,
just that they will be detected and retries will be performed

it is important that the code executed inside transactions
be free of side effects
since it may be run multiple times due to these retries

OBjECT CoMPUTING, INC.

Ref Example - Data Model

(ns com.ociweb.bank)

(defstruct account-struct :id :owner :balance-ref)

(def account-map-ref (ref (sorted-map)))

OBjECT CoMPUTING, INC.

Ref Example - New Account

(defn open-account
[owner]
(dosync
(let [account-map (@account-map-ref
last-entry (last account-map)
id (if last-entry (inc (key last-entry)) 1)
account (struct account-struct id owner (ref 0))]

(alter account-map-ref assoc id account)

account)))

OBjECT CoMPUTING, INC.

Ref Example - Deposit

(defn deposit [account amount]

(dosync
(Thread/sleep 50)
(let [owner (account :owner)
balance-ref (account :balance-ref)
type (if (pos? amount) "deposit" "withdraw")
direction (if (pos? amount) "to" "from")
abs-amount (Math/abs amount)]
(if (>= (+ @balance-ref amount) 0)
(do
(alter balance-ref + amount)
(println (str type "ing") abs-amount direction (account :owner)))
(throw (IllegalArgumentException.

(str "insufficient balance for " owner " to withdraw " abs-amount)))))))

Ref Example - Withdrawal

(defn withdraw
[account amount]

(deposit account (- amount)))

OBjECT CoMPUTING, INC.

Ref Example - Transfer

(defn transfer [from-account to-account amount]
(dosync
(println "transferring" amount
"from" (from-account :owner)
"to" (to-account :owner))
(withdraw from-account amount)

(deposit to-account amount)))

OBjECT CoMPUTING, INC.

Ref Example - Report

(defn- report-1

[account]

(let [balance-ref (account :balance-ref)]
(println "balance for" (account :owner) "is" @balance-ref)))

(defn report

[& accounts]

(dosync (doseq [account accounts] (report-1 account))))

doseq performs list comprehension

OBjECT CoMPUTING, INC.

Ref Example - Exceptions

(Thread/setDefaultUncaughtExceptionHandler first argument to proxy is
(proxy [Thread$UncaughtExceptionHandler] [] & vectot.’ of the class 'r.o extend
and/or interfaces to implement

(uncaughtException [thread throwable]
second argument to proxy is

(println (-> throwable .getCause .getMessage))))) a vector arguments to the
superclass constructor

OBjECT CoMPUTING, INC.

Ref Example

(let [al (open-account "Mark")
a2 (open-account "Tami")
thread (Thread. #(transfer al a2 50))]
(try
(deposit al 100)

(deposit a2 200)

(.start thread)

(withdraw al 75)

(.join thread) ; wait for thread to finish
(report al a2)
(catch IllegalArgumentException e

(println (.getMessage e) "in main thread"))))

Ref Example - Output

depositing 100 to Mark

depositing 200 to Tami

transferring 50 from Mark to Tami
withdrawing 75 from Mark

transferring 50 from Mark to Tami from retry
insufficient balance for Mark to withdraw 50
balance for Mark is 25

balance for Tami is 200

Atom Reference Type

For updating a single value

® not coordinating changes to multiple values

Simpler than the combination of Refs and STM
Not affected by transactions

Three functions atomically change an Atom value
reset! - changes without considering old value
compare-and-set! - changes only if old value is known

swap! - calls a function to compute the new value based on the old value
repeatedly until the value at the beginning of the function
matches the value just before it is changed

uses compare-and-set! after calling the function

Cx}

Agent Reference Type

® Used to run tasks in separate threads
that typically don't require coordination

® Useful for modifying the state of a single object
which is the value of the agent
® this value is changed by running an "action" in a separate thread

® an action is a function that takes
the current value of the Agent as its first argument
and optionally takes additional arguments

® Only one action at a time will be run on a given Agent

® automatically queued

Editors and IDEs

Emacs

® clojure-mode and swank-clojure, both at http://github.com/jochu. swank-clojure

® uses the Superior Lisp Interaction Mode for Emacs (Slime)
described at http://common-lisp.net/project/slime/

Vim

® VimClojure http://kotka.de/projects/clojure/vimclojure.html and
Gorilla at http://kotka.de/projects/clojure/gorilla.html

NetBeans - enclojure at http://enclojure.org/
IDEA - "La Clojure” at http://plugins.intellij.net/plugin/?id=4050
EC“PSG = clojure-dev at http://code.google.com/p/clojure-dev/

65

Lambda Lounge

A St. Louis user group that focuses on
functional and dynamic programming languages

http://lambdalounge.org/
Meets in Appistry office

® near intersection of Olive and Lindbergh
First Thursday of each month

® 6 p.m.toaround 8 p.m.

Google Group - lambda-lounge

Resources

® http://ociweb.com/mark/clojure/ contains
® alink to a long Clojure article | wrote

® alink to page that categorizes all built-in
Clojure special forms, functions and macros

many other Clojure-related links

