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STM

Two Flavors of Concurrency

• Divide and conquer

• divide data into subsets and process it by
running the same code on each subset concurrently

• MapReduce solutions focus on this flavor

• Coexist

• execute different code concurrently and
allow it to safely access the same data

• Transactional Memory (TM)
focuses on this flavor
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Concurrency Options

• Locks

• popular in C, C++ and Java

• Actors

• popular in Erlang, Haskell and Scala

• Transactional Memory

• popular in Clojure and Haskell

• can be implemented in
hardware or software
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Locks

• Pros

• explicit control over
when locks are acquired
and released
allows optimal solutions

• developer familiarity

• supported by many 
programming languages

• Cons

• which locks need to be acquired?

• what order to prevent deadlock?

• variables for which locks should
be acquired can be accessed
even when no locks or
the wrong locks are acquired

• must remember to release locks
in error recovery code

• correctly synchronized methods
don’t compose

• pessimistic approach
reduces concurrency
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Actors ...

• Software entities that execute as
separate processes or threads

• Only use data passed to them
via asynchronous messages

• can retain data for use in subsequent processing

• When a message is received by an actor it can

• create new actors

• send messages to other actors

• decide how it will handle subsequent messages
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...  Actors

• Pros

• since no memory is shared between actors,
data access doesn’t need synchronization

• Cons

• some messages may be large since they are the only way to share data

• no general mechanism for coordinating activities of multiple actors
(i.e. transactions)

• may want to send messages to multiple actors within a txn
and guarantee that either all messages are processed successfully
or all the actors involved rollback changes to their retained state
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TM

• Provides ACID txn characteristics for memory

• atomic - all changes commit or all changes roll back;
changes appear to happen at a single moment in time

• consistent - operate on a snapshot of memory
using newest values at beginning of txn

• isolated - changes are only visible to other threads after commit

• not durable - changes are lost if software crashes or hardware fails

• Demarcating txns
• atomic {...} in literature, (dosync ...) in Clojure, atomically in Haskell

• Nested txns join the outermost txn - txns compose
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TM Retries

• If two txns overlap in time
and they attempt to write the same memory
then one of them will discard their changes
and retry from their beginning

• in some implementations, reads can also trigger retries

• could retry txn A if txn B modifies memory that was read by txn A
since it may have made decisions based on the value it read

• reads only trigger a retry in Clojure when the history list of a Ref
doesn’t contain a value committed before the txn began (a fault) ...
will make sense when history lists are described later
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TM Pros

• Familiar concept from database world

• Optimistic, not pessimistic

• provides more opportunities for concurrency,
especially for txns that only read data

• Easier to write correct code than using locks

• don’t have to determine which locks need to be acquired and order

• only have to identify sections of code that require
a consistent view of the data it reads and writes

• Implementations can guarantee ...

• no deadlocks, livelocks or race conditions (see next slide)
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Concurrency Issues

• Deadlock

• concurrent threads cannot proceed because they are each waiting on
a resource for which another has acquired exclusive access

• Livelock

• concurrent threads are performing work (not blocked), but cannot 
complete due to something other threads have done or not done

• Race condition

• the outcome of a thread may be wrong due to the timing of
changes to shared state made by other concurrent threads

• None of these can occur in Clojure STM
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TM Cons

• Potential for many retries resulting in wasted work

• Overhead imposed by txn bookkeeping

• more detail on this later

• Need to avoid side-effects

• such as I/O

• since txns may retry any number of times

• Tool support is currently lacking

• for learning which memory locations experienced write conflicts

• for learning how often each txn retried and why
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Clojure provides a 
solution using Agents.
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On Your Honor

• TM works best in programming languages
that provide a special kind of mutable variable
that can only be modified in a txn

• Ref in Clojure

• TVar in Haskell

• Otherwise developers are on their honor
to use TM correctly

• similar to developers being on their honor to use locks correctly

12



STM

Garbage Collection Analogy

• From Dan Grossman

• associate professor at University of Washington

• see paper “The Transactional Memory / Garbage Collection Analogy”

• listen to Software Engineering Radio podcast #68

• Can GC be replaced by TM in these statements?

• “Many used to think GC was too slow without hardware.”

• “Many used to think GC was about to take over, decades before it did.”

• “Many used to think we needed a back door
for when GC was too approximate.”
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More on Concurrency Options

• Shared state

• locks provide manual management of shared state

• TM provides semi-automated management of shared state

• actors avoid shared state; Can it be avoided? Are transactions needed?

• Baseball analogy
• locks never attempt to steal a base since they might get caught - pessimistic

• TM does and just returns to the previous base and retries if caught - optimistic

• actors utilize a coach actor to send a message to the runner actor
to request a steal attempt;
the umpire actor sends a message to runner actor
to indicate whether they are safe
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Persistent Data Structures

• Immutable data structures such as
lists, vectors, sets and hash maps

• Can efficiently create new ones from existing ones

• New ones share memory with old ones

• okay since they can’t be modified

• Safe for concurrent access

• An opinion

• saying a language is functional, but doesn’t have persistent data structures 
is like saying a language is OO, but doesn’t support polymorphism
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STM Implementations

• Part of language

• Clojure, Haskell, Perl 6

• As a library

• C, C++, C#, Common Lisp, Java, MUMPS,
OCaml, Python, Scheme, Smalltalk

• Implementations vary greatly

• difficult to make general statements about STM characteristics
such as memory usage and performance
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Clojure STM Implementation

• The remaining slides describe
the Clojure STM implementation,
starting with concepts related to it

• Valuable even if you don’t use Clojure

• to understand how at least one STM implementation
works under the covers

• to enable reasoning about performance characteristics

• to encourage implementations for other languages
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Transaction Creation

• (dosync body)
• passed expressions that form the body of a txn
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Reference Types

• Mutable references to immutable objects

• Four kinds

• Var

• Atom

• Agent

• Ref

• Modification characteristics
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Uncoordinated Coordinated

Synchronous Var, Atom Ref

Asynchronous Agent

“coordinated” here means 
managed by txns

STM

Vars

• Can have a root value that is shared by all threads
• (def name value)

• Can have thread-specific values
• (binding [name value ...] body)

• Often used for constants and
configuration variables such as *out*

• Reads (dereferences) are atomic - @name

• Writes are also atomic

• with binding

“atomic” here means that 
multiple threads can access 
them without synchronization
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Atoms

• Have a single value that is shared across threads
• (def name (atom value))

• Reads (dereferences) are atomic - @name

• Writes are also atomic
• (reset! name value)

• (compare-and-set! name current-value new-value)

• (swap! name update-function arg*)
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def isn’t the only way to bind a reference type to a name; 
can pass as a function argument and use let and binding

Function names that end with ! 
typically indicate that the function 
either modifies its arguments
or has some other side effect.
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Agents

• Have a single value that is shared across threads
• (def name (agent value))

• Reads (dereferences) are atomic - @name

• Writes are asynchronous
• by sending a function (called an “action” in this context)

to the Agent that is executed in a different thread

• action is passed the current value of the Agent
and any additional, optional arguments

• return value of action becomes new value of the Agent, atomically

• only one action at a time is executed for a given Agent,
which prevents concurrent updates to an Agent

• actions sent to Agents inside an STM txn are held until the txn commits
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(send name action arg*)
uses fixed size thread pool

(send-off name action arg*)
uses variable size thread pool

useful for causing
side effects after a txn
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Refs

• Have a single value that is shared across threads
• (def name (ref value))

• Reads (dereferences) are atomic - @name

• while reads are not required to be
performed inside an STM txn,
doing so provides access to a consistent snapshot
of the set of Refs accessed inside the txn

• Writes must be performed inside an STM txn

• Refs are the only type managed by STM
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In-Txn and
Committed Values

• In-txn values of Refs

• maintained by each txn

• only visible to code running in the txn

• committed at end of txn if successful

• cleared after each txn try

• Committed values

• maintained by each Ref in a circular linked-list (tvals field)

• each has a commit “timestamp” (point field in TVal objects)

• ordered long values obtained by calling incrementAndGet on an AtomicLong
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in java.util.concurrent.atomic package
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For both ref-set and alter,
if another txn sets an in-txn value
for the same Ref, one of the txns will retry.
If another txn commits a change
to the same Ref, this txn will retry.

Changing a Ref ...

• Three ways

• all must be performed inside an STM txn

• (ref-set ref new-value)
• (alter ref function arg*)
• invokes the function, passing it the current Ref value and the arguments,

changes the Ref to refer to the function return value,
and returns the new value
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... Changing a Ref

• (commute ref function arg*)
• similar to alter

• use when the order of changes across concurrent txns
doesn’t matter and use of in-txn values won’t produce incorrect results

• the txn will not retry if another txn has modified the Ref
since the current txn try began

• during txn commit,
all commute functions invoked in the txn
are called again using latest committed Ref values

• example uses

• computing min, max and average of values in a collection

• adding objects to a collection
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Validators

• (set-validator! ref function)

• Function is invoked when the value of
a given reference type is about to be modified

• Passed the proposed new value
of the reference type

• Reject the change by returning false
or throwing any kind of exception
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Watch Functions

• (add-watch ref key function)

• Function is invoked if
the reference type may have changed

• passed the key, the reference type, its old value and its new value

• A reference type can have
any number of watch functions

• each must be added with a unique key
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Watcher Agents

• (add-watcher ref send-type agent function)

• Function is “sent” to the Agent
in a different thread
if the reference type may have changed

• passed current value of Agent and the reference type

• send-type determines the thread pool used
to obtain the thread in which the function runs

• :send for fixed or:send-off for variable size thread pool
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Clojure STM Design
and Implementation

• Design is based on

• multi-version concurrency control

• snapshot isolation

• Mostly implemented in Java now

• but work to re-implement in Clojure is underway
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Multi-Version
Concurrency Control

• Uses timestamps or increasing txn ids

• Maintains multiple versions of objects with commit “timestamps”

• Txns read the most recent versions of objects
that were committed before the txn start

• When attempting a write,
if another txn has modified the object
since the current txn started
then the txn discards its changes and retries

• Reads are never blocked
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Clojure uses increasing ids for
txn starts, try starts and commits.
They are obtained by calling the 
incrementAndGet method
on a Java AtomicLong.
This uses a compare and swap 
(CAS) approach.

STM

Snapshot Isolation

• Txns appear to
operate on a snapshot of memory
taken at the start of the txn

• At the end of the txn,
changes are committed only if
no other txns have committed changes
to the values to be committed
since the txn began
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Write Skew

• Occurs when

• concurrent txns read common sets of data,
make changes to different data within that set,
and there are constraints on the data

• Example
• data is the number of dogs and number of cats owned by a family

• constraint is the sum of dogs and cats that can be owned by a family <= 3

• John and his wife Mary own one dog and one cat

• John adopts a new dog while Mary simultaneously adopts a new cat (2 txns)

• both txns read the number of dogs and cats they own,
but they modify different data

• neither txn violates the constraint, so both succeed
which results in a constraint violation
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avoided by STM 
implementations that 
use “read tracking”;
a performance tradeoff

STM

Clojure Solution
To Write Skew

• (ensure ref)

• Prevents other txns from modifying the Ref

• calling txn can modify the Ref unless
another txn has also called ensure on it

• Must be called inside a txn

• For previous example

• both txns should ensure the Ref they don’t plan to modify
since its value, together with that of the Ref being modified,
is used in a constraint
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Main STM Classes ...
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• LockingTransaction

• one of these objects per thread (ThreadLocal)

• doesn’t make sense to have more than one active txn per thread

• avoids having to recreate bookkeeping collections
referred to by LockingTransaction fields every time a new txn starts

• dosync macro calls sync macro which calls
LockingTransaction runInTransaction static method

• Ref

• one of these objects per mutable reference to be managed by STM

• LockingTransaction.Info

• part of lock-free strategy to mark Refs as having an uncommitted change

STM

... Main STM Classes
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Transaction Status

• RUNNING

• executing code in the body

• COMMITTING

• finished executing code in the body; committing changes to Refs, if any

• RETRY

• will attempt a retry, but hasn’t started the next try yet

• KILLED

• has been “barged” by another txn (explained later)

• COMMITTED

• finished committing changes to Refs, if any; transaction completed (even if read-only)
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stored in status field of 
LockingTransaction.Info objects 
which are referred to from
the info field of 
LockingTransaction objects
and the tinfo field of Ref objects

STM

Ref History List

• Each Ref maintains a list of
recently committed values

• using TVal objects

• length is controlled by minHistory and maxHistory

• default to 0 and 10, but can be customized for each Ref

• When a change to a Ref is committed

• a new node is added to its history list if

• history list length < minHistory OR

• a fault (described on next slide) has occurred since the last commit of the Ref
and history list length < maxHistory

• otherwise the oldest node is modified to become the newest node
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With minHistory set to zero, 
the history list of each Ref
grows according to how
the Ref is actually used.
If a Ref never has a fault, its 
history list never needs to grow.
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Faults

• A fault occur when

• there is an attempt to read a Ref in a txn AND

• there is no in-txn value in the txn AND

• all values in the history list for the Ref
were committed after the txn started

• Faults cause

• a txn to retry

• the history chain for the Ref to grow,
unless maxHistory has been reached
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means it hasn’t been 
modified in the txn

STM

Write Conflicts

• A write conflict occurs when

• txn A attempts to modify a Ref

• txn B has already modified the same Ref,
but hasn’t yet committed the change

• it has an in-txn value

• When this occurs

• txn A will attempt to barge txn B (see next slide)
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Barging

• Determines whether txn A should be
allowed to continue while txn B retries

• Three conditions must be met

• txn A must have been running for at least 1/100th of a second 
(BARGE_WAIT_NANOS)

• if it just started then it may as well be the one to retry

• txn A started before txn B (favors older txns)

• txn B has a status of RUNNING and can be changed to KILLED

• won’t interrupt a txn that is in the process of committing

• Otherwise txn A retries and txn B continues
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What Causes a Retry?

• A Ref is read in a txn and one of the following is true

• another txn barged the current one (status isn’t RUNNING)

• the Ref has no in-txn value and fault occurs

• ref-set or alter is called on a Ref
and one of the following is true

• can’t set the tinfo field of the Ref to indicate that it was modified by the current txn
because a write lock cannot be obtained for the Ref
because another thread holds a read or write lock for it

• another txn changed the Ref, but hasn’t committed yet and an attempt to barge it fails

• ref-set, alter, commute or ensure is called on a Ref
and another txn barged the current one (status isn’t RUNNING)

• During commit, a txn is preparing to rerun a commute function on a Ref,
but another txn made an in-txn change to the same Ref and barging it fails
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the next try will have a new start time, 
so will look for newer Ref values
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Retries

• When a txn retires

• all read and write locks currently held are released

• all in-txn values of modified Refs are discarded

• many collections associated with the txn are cleared

• ensures, notify, actions, vals, sets and commutes

• the txn status is changed to RETRY

• execution continues at the beginning of the txn body

• Limited number of retries

• 10,000 (RETRY_LIMIT)

• seems arbitrary and cannot be configured
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Locks in STM ...

• ReentrantReadWriteLock

• each instance manages the read and write locks for a single Ref

• any number of concurrent txns can hold a read lock for a Ref
OR one txn can hold the write lock for a Ref

• locks are only held briefly, not for the duration of a txn

• unless ensure is called on a Ref in which case a read lock is held
until the Ref is modified in the txn or the txn ends
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in java.util.concurrent.locks package
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... Locks in STM ...

• Lock-free strategy

• the tinfo field in Ref objects
is set to a LockingTransaction.Info object
to mark them as having an in-txn value for a given txn

• alternative to having LockingTransaction objects
lock Ref objects for the duration of a transaction
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... Locks in STM

• Read locks are acquired to

• read (dereference) a Ref in a txn that has no in-txn value -
released when finished

• ensure a Ref - not released until txn modifies the Ref or commits

• commute a Ref - only held until newest value is copied into map of
in-txn values; released before commute function is executed

• Write locks are acquired to

• mark a Ref as having an in-txn value in a specific txn -
released after marking

• commit changes to Refs - released when commit completes
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STM Overhead

• Despite overhead introduced by STM,
it can still be faster than using locks
because it is optimistic instead of pessimistic

• more opportunities for concurrency instead of blocking

• Specific sources of overhead
incurred during reads and writes of Refs
are described next
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STM Ref Read Overhead

• read = dereference

• Unless a Ref was modified in a txn,
giving it an in-txn value, walk history list
to find newest value before txn started

• if no other txn committed a change to the Ref
since the current one started,
the first value in the chain is used
and the lookup is fast
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STM Ref  Write Overhead ...

• Verify that a txn is running

• if not, throw IllegalStateException

• Verify no commute

• once commute has been called on a Ref,
ref-set and alter cannot be called on it within the same txn

• since commute functions are called a second time during the commit,
calls to ref-set and alter after commute
wouldn’t have a lasting affect
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... STM Ref  Write Overhead ...

• On the first write of a Ref within the txn

• add the Ref to the set of Refs modified by the txn

• used during commit

• mark the Ref as having an in-txn value for the txn

• if ensure was called on the Ref earlier in the txn, release the read lock for the Ref

• attempt to acquire a write lock for the Ref and retry if unsuccessful

• if another txn has committed a change to the Ref since the current txn began, retry

• if another txn made an in-txn change to the Ref since the current txn began,
attempt to barge it and retry if unsuccessful

• mark Ref as being “locked” by current txn (sets its tinfo field to refer to current txn)

• release the write lock for the Ref

50



STM

... STM Ref  Write Overhead

• On each write of a Ref,
including the first in a txn

• add new value to the map of in-txn values for the txn

• subsequent reads of the Ref inside the txn
get the value from this map instead of the history chain
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STM Commit Overhead ...

• Change txn status from RUNNING to COMMITTING

• Rerun commute functions called in txn

• must acquire a write lock for each commuted Ref

• Acquire write locks for all Refs modified in txn
so there can be no readers

• Validate

• call all the validate functions registered on modified Refs
and retry if any disapprove of a change

• Update history list for each modified Ref

• add new node or modify an existing one (explained on slide 38)

• For each modified Ref that has at least one registered watcher,
create a Notify object that describes the change
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... STM Commit Overhead

• Change txn status from COMMITTING to COMMITTED

• Release all write locks acquired previously

• Release all read locks still held from calls to ensure

• Clear contents of several txn collection fields in preparation for next use

• ensures, vals, sets and commutes

• If commit was successful,
notify all registered Ref watchers using data in Notify objects

• Dispatch all actions sent to Agents in txn

• Clear contents of more txn collection fields (notify and actions)

• Return value of last expression in txn body
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Conclusions

• STM makes writing correct concurrent code
much easier than using locks!

• Clojure isn’t the only programming language
with STM support

• For more details on Clojure,
see http://ociweb.com/mark/clojure/

• For more details on STM
and the Clojure implementation,
see http://ociweb.com/mark/stm/
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