
1

Joda Time
Java Library

Mark Volkmann
Object Computing, Inc.

mark@ociweb.com

2 Joda Time

Joda Time Overview

• Free, open-source Java library for
working with dates and times
 Apache V2 license; not viral

• Replacement for the JDK
Date and Calendar classes
 being standardized under JSR-310
 likely to become a standard part of Java

• Small - version 1.6 JAR file is 524 KB

• No dependencies outside core Java classes
• http://joda-time.sourceforge.net/

 API documentation is at a link on this page
• http://joda-time.sourceforge.net/api-release/

2

3 Joda Time

Supported Concepts

• Instant
 “an instant in the datetime continuum specified as

a number of milliseconds from 1970-01-01T00:00Z”

• Partial
 a partial date/time representation (subset of fields) with no time zone

• Interval
 “an interval of time from one millisecond instant to another”

• Duration
 “a duration of time measured in milliseconds”

• Period
 “a period of time defined in terms of fields,

for example, 3 years 5 months 2 days and 7 hours”

• Chronology
 “a pluggable calendar system”

partial +
missing fields +
time zone =
instant

4 Joda Time

Mutability

• Most classes that represent the concepts
are immutable

• Using these is recommended for most cases
to avoid issues with concurrent access

• The only mutable classes are
 MutableDateTime
 MutableInterval

 MutablePeriod

3

5 Joda Time

org.joda.time Main Classes

Mutable ClassesImmutable ClassesConcept

GregorianChronology

ISOChronology (default)
many more

Chronology

MutablePeriodPeriod

Minutes Hours Days

Weeks Months Years

Period

DurationDuration

MutableIntervalIntervalInterval

LocalDate

LocalDateTime

LocalTime

Partial

Partial

MutableDateTimeDateTime

DateMidnight

Instant

Instant

6 Joda Time

Instants …

• “A number of milliseconds from 1970-01-01T00:00Z”

Instant instant = new Instant(1000); // 1 second after 1970
instant = instant.plus(500);
instant = instant.minus(30);
System.out.println("milliseconds = " + instant.getMillis());

// Creating an instant representing current date and time is easy.
DateTime dt = new DateTime();
System.out.println("now date and time = " + dt);

Output:
milliseconds = 1470
now date and time = 2008-12-22T10:07:26.468-06:00

4

7 Joda Time

… Instants

// An instant representing a specific date and time
// can be created by specifying all the field values.
dt = new DateTime(1961, 4, 16, 10, 19, 0, 0);
System.out.println("my birthday = " + dt);
System.out.println("year is " + dt.getYear());
System.out.println("month is " + dt.getMonthOfYear())

Output:
my birthday = 1961-04-16T10:19:00.000-06:00
year is 1961
month is 4

8 Joda Time

Partials …

• A partial date/time representation (subset of fields)
with no time zone

// There are a large number of constructors for creating
// period objects. We'll demonstrate a few of them.
LocalDate birthday = new LocalDate(1961, 4, 16);
long millis = birthday.toDateTimeAtCurrentTime().getMillis();
System.out.println("millis = " + millis);

birthday = new LocalDate(1970, 1, 1); // not 0ms in local timezone
millis = birthday.toDateTimeAtCurrentTime().getMillis();
System.out.println("millis = " + millis);

Output:
millis = -274866753528 (negative because it’s before 1970)
millis = 58046472 (close to zero)

5

9 Joda Time

… Partials

LocalDate today = new LocalDate();
int year = today.getYear();

// Find the date of the next Christmas.
LocalDate christmas = new LocalDate(year, 12, 25);
if (today.isAfter(christmas)) christmas = christmas.plusYears(1);
System.out.println("The next Christmas is on " + christmas);

Output:
The next Christmas is on 2008-12-25

10 Joda Time

Intervals …

• “An interval of time from
one millisecond instant to another”

// Create an Interval from now to one month from now.
DateTime startTime = new DateTime(); // now
DateTime endTime = startTime.plus(Months.months(1));
Interval interval = new Interval(startTime, endTime);
System.out.println("interval = " + interval);
System.out.println("start = " + interval.getStart());
System.out.println("end = " + interval.getEnd());
System.out.println("duration = " + interval.toDuration());

Output:
interval = 2008-12-22T10:07:26.466/2009-01-22T10:07:26.466
start = 2008-12-22T10:07:26.466-06:00
end = 2009-01-22T10:07:26.466-06:00
duration = PT2678400S (31*24*60*60)

6

11 Joda Time

… Intervals

// There are many Interval methods whose name begins with "with"
// that create a new interval relative to an existing one.
// For example, this creates an interval
// that lasts for one more hour.
interval = interval.withEnd(interval.getEnd().plusHours(1));
System.out.println("interval = " + interval);

Output:
interval = 2008-12-22T10:07:26.466/2009-01-22T11:07:26.466

12 Joda Time

Output:
now = 2008-12-22T10:07:26.333-06:00
duration = PT36446.333S

Durations …

• “A duration of time measured in milliseconds”

// Can construct with a given number of milliseconds.
Duration duration = new Duration(1000); // 1 second
System.out.println("duration = " + duration);

// Can construct with two Instants
// to get the duration between them.
// Get the duration from midnight this morning to now.
DateTime now = new DateTime();
System.out.println("now = " + now);
// The method toDateMidnight returns a new DateTime
// where all the time fields are set to zero.
duration = new Duration(now.toDateMidnight(), now);
System.out.println("duration = " + duration);

Output:
duration = PT1S

7

13 Joda Time

… Durations …

// A Duration can be obtained from an Interval.
Interval interval = new Interval(now.toDateMidnight(), now);
duration = interval.toDuration();
System.out.println("duration = " + duration);

// A Duration can be added to an Instant to get a new Instant.
duration = new Duration(1000); // 1 second
DateTime nowPlusOneSecond = now.plus(duration);
System.out.println("nowPlusOneSecond = " + nowPlusOneSecond);

Output:
nowPlusOneSecond = 2008-12-22T10:07:27.333-06:00

Output:
duration = PT36446.333S

14 Joda Time

… Durations

// There is no mutable Duration type,
// so a new Duration object must be created
// when time needs to be added or subtracted.
// Compare this to code in the partials examples.
duration = duration.plus(100);
duration = duration.minus(20);
System.out.println("duration = " + duration)

Output:
duration = PT1.080S

8

15 Joda Time

Periods …

• “A period of time defined in terms of fields”

Period period = new Period(1000); // 1 second
System.out.println("period = " + period);

// A Period can be constructed with field values
// or a duration in milliseconds. Create a period of
// 2 hours 57 minutes 15 seconds 0 milliseconds.
period = new Period(2, 57, 15, 0);
System.out.println("period = " + period);

// A Period can be added to an instant to get a new instant.
// The date specified in the next line is March 4, 2007, 8 am.
// Unlike in the JDK, the value for January is 1 instead of 0.
DateTime startTime = new DateTime(2007, 3, 4, 8, 0, 0, 0);
DateTime endTime = startTime.plus(period);
System.out.println("endTime = " + endTime);

Output:
period = PT2H57M15S

Output:
endTime =
2007-03-04T10:57:15.000-06:00

Output:
period = PT1S

16 Joda Time

… Periods …

// Periods must be converted to durations in order to
// compare them. This is because the exact length of period
// can vary based on context. For example, a period of one day
// can be 23 hours instead of 24 when the context is
// a day in which daylight savings time is changing.

Hours hours = Hours.hoursBetween(startTime, endTime);
System.out.println("hours = " + hours);

Minutes minutes = Minutes.minutesBetween(startTime, endTime);
System.out.println("minutes = " + minutes);

Output:
hours = PT2H
minutes = PT177M

9

17 Joda Time

… Periods

// Using a MutablePeriod is the most efficient way
// to represent a duration that needs to be modified
// when concurrent access isn't an issue.
// Compare this to code in the durations examples.
MutablePeriod mp = new MutablePeriod(1000);
mp.add(100);
mp.add(-20);
System.out.println("mp = " + mp);

Output:
mp = PT1.080S

18 Joda Time

Chronologies

• Calendar system options
 Gregorian - standard since 10/15/1582

• defines every fourth year as leap, unless
the year is divisible by 100 and not by 400

 Julian - standard before 10/15/1582
• defines every fourth year as leap

 GJ
• historically accurate with Julian followed by Gregorian starting on 10/15/1582

 ISO - the default
• based on the ISO8601 standard
• same as Gregorian except for treatment of century

 Buddhist, Coptic, Ethiopic - not commonly used

• For most applications,
the default ISOCronology is appropriate

10

19 Joda Time

JSR-310

• From Stephen Colebourne,
creator of Joda Time and JSR-310 spec. lead
 “JSR-310 is inspired by Joda-Time,

rather than a straight adoption of it.
Thus, there are key differences in the APIs.
JSR-310 isn't at the download and use stage yet.”

• To keep up with the status
of this standardization effort,
browse https://jsr-310.dev.java.net/

