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Joda Time Overview

• Free, open-source Java library for
working with dates and times
 Apache V2 license; not viral

• Replacement for the JDK
Date and Calendar classes
 being standardized under JSR-310
 likely to become a standard part of Java

• Small - version 1.6 JAR file is 524 KB

• No dependencies outside core Java classes
• http://joda-time.sourceforge.net/

 API documentation is at a link on this page
• http://joda-time.sourceforge.net/api-release/
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Supported Concepts

• Instant
 “an instant in the datetime continuum specified as

a number of milliseconds from 1970-01-01T00:00Z”

• Partial
 a partial date/time representation (subset of fields) with no time zone

• Interval
 “an interval of time from one millisecond instant to another”

• Duration
 “a duration of time measured in milliseconds”

• Period
 “a period of time defined in terms of fields,

for example, 3 years 5 months 2 days and 7 hours”

• Chronology
 “a pluggable calendar system”

partial +
missing fields +
time zone =
instant
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Mutability

• Most classes that represent the concepts
are immutable

• Using these is recommended for most cases
to avoid issues with concurrent access

• The only mutable classes are
 MutableDateTime
 MutableInterval

 MutablePeriod
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org.joda.time Main Classes

Mutable ClassesImmutable ClassesConcept

GregorianChronology

ISOChronology (default)
many more
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Weeks Months Years
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DurationDuration
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LocalDate

LocalDateTime

LocalTime
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MutableDateTimeDateTime

DateMidnight

Instant

Instant
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Instants …

• “A number of milliseconds from 1970-01-01T00:00Z”

Instant instant = new Instant(1000); // 1 second after 1970
instant = instant.plus(500);
instant = instant.minus(30);
System.out.println("milliseconds = " + instant.getMillis());

// Creating an instant representing current date and time is easy.
DateTime dt = new DateTime();
System.out.println("now date and time = " + dt);

Output:
milliseconds = 1470
now date and time = 2008-12-22T10:07:26.468-06:00
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… Instants

// An instant representing a specific date and time
// can be created by specifying all the field values.
dt = new DateTime(1961, 4, 16, 10, 19, 0, 0);
System.out.println("my birthday = " + dt);
System.out.println("year is " + dt.getYear());
System.out.println("month is " + dt.getMonthOfYear())

Output:
my birthday = 1961-04-16T10:19:00.000-06:00
year is 1961
month is 4
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Partials …

• A partial date/time representation (subset of fields)
with no time zone

// There are a large number of constructors for creating
// period objects.  We'll demonstrate a few of them.
LocalDate birthday = new LocalDate(1961, 4, 16);
long millis = birthday.toDateTimeAtCurrentTime().getMillis();
System.out.println("millis = " + millis);

birthday = new LocalDate(1970, 1, 1); // not 0ms in local timezone
millis = birthday.toDateTimeAtCurrentTime().getMillis();
System.out.println("millis = " + millis);

Output:
millis = -274866753528 (negative because it’s before 1970)
millis = 58046472 (close to zero)
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… Partials

LocalDate today = new LocalDate();
int year = today.getYear();

// Find the date of the next Christmas.
LocalDate christmas = new LocalDate(year, 12, 25);
if (today.isAfter(christmas)) christmas = christmas.plusYears(1);
System.out.println("The next Christmas is on " + christmas);

Output:
The next Christmas is on 2008-12-25
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Intervals …

• “An interval of time from
one millisecond instant to another”

// Create an Interval from now to one month from now.
DateTime startTime = new DateTime(); // now
DateTime endTime = startTime.plus(Months.months(1));
Interval interval = new Interval(startTime, endTime);
System.out.println("interval = " + interval);
System.out.println("start = " + interval.getStart());
System.out.println("end = " + interval.getEnd());
System.out.println("duration = " + interval.toDuration());

Output:
interval = 2008-12-22T10:07:26.466/2009-01-22T10:07:26.466
start = 2008-12-22T10:07:26.466-06:00
end = 2009-01-22T10:07:26.466-06:00
duration = PT2678400S (31*24*60*60)
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… Intervals

// There are many Interval methods whose name begins with "with"
// that create a new interval relative to an existing one.
// For example, this creates an interval
// that lasts for one more hour.
interval = interval.withEnd(interval.getEnd().plusHours(1));
System.out.println("interval = " + interval);

Output:
interval = 2008-12-22T10:07:26.466/2009-01-22T11:07:26.466
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Output:
now = 2008-12-22T10:07:26.333-06:00
duration = PT36446.333S

Durations …

• “A duration of time measured in milliseconds”

// Can construct with a given number of milliseconds.
Duration duration = new Duration(1000); // 1 second
System.out.println("duration = " + duration);

// Can construct with two Instants
// to get the duration between them.
// Get the duration from midnight this morning to now.
DateTime now = new DateTime();
System.out.println("now = " + now);
// The method toDateMidnight returns a new DateTime
// where all the time fields are set to zero.
duration = new Duration(now.toDateMidnight(), now);
System.out.println("duration = " + duration);

Output:
duration = PT1S
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… Durations …

// A Duration can be obtained from an Interval.
Interval interval = new Interval(now.toDateMidnight(), now);
duration = interval.toDuration();
System.out.println("duration = " + duration);

// A Duration can be added to an Instant to get a new Instant.
duration = new Duration(1000); // 1 second
DateTime nowPlusOneSecond = now.plus(duration);
System.out.println("nowPlusOneSecond = " + nowPlusOneSecond);

Output:
nowPlusOneSecond = 2008-12-22T10:07:27.333-06:00

Output:
duration = PT36446.333S
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… Durations

// There is no mutable Duration type,
// so a new Duration object must be created
// when time needs to be added or subtracted.
// Compare this to code in the partials examples.
duration = duration.plus(100);
duration = duration.minus(20);
System.out.println("duration = " + duration)

Output:
duration = PT1.080S
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Periods …

• “A period of time defined in terms of fields”

Period period = new Period(1000); // 1 second
System.out.println("period = " + period);

// A Period can be constructed with field values
// or a duration in milliseconds.  Create a period of
// 2 hours 57 minutes 15 seconds 0 milliseconds.
period = new Period(2, 57, 15, 0);
System.out.println("period = " + period);

// A Period can be added to an instant to get a new instant.
// The date specified in the next line is March 4, 2007, 8 am.
// Unlike in the JDK, the value for January is 1 instead of 0.
DateTime startTime = new DateTime(2007, 3, 4, 8, 0, 0, 0);
DateTime endTime = startTime.plus(period);
System.out.println("endTime = " + endTime);

Output:
period = PT2H57M15S

Output:
endTime =
2007-03-04T10:57:15.000-06:00

Output:
period = PT1S
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… Periods …

// Periods must be converted to durations in order to
// compare them.  This is because the exact length of period
// can vary based on context.  For example, a period of one day
// can be 23 hours instead of 24 when the context is
// a day in which daylight savings time is changing.

Hours hours = Hours.hoursBetween(startTime, endTime);
System.out.println("hours = " + hours);

Minutes minutes = Minutes.minutesBetween(startTime, endTime);
System.out.println("minutes = " + minutes);

Output:
hours = PT2H
minutes = PT177M
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… Periods

// Using a MutablePeriod is the most efficient way
// to represent a duration that needs to be modified
// when concurrent access isn't an issue.
// Compare this to code in the durations examples.
MutablePeriod mp = new MutablePeriod(1000);
mp.add(100);
mp.add(-20);
System.out.println("mp = " + mp);

Output:
mp = PT1.080S
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Chronologies

• Calendar system options
 Gregorian - standard since 10/15/1582

• defines every fourth year as leap, unless
the year is divisible by 100 and not by 400

 Julian - standard before 10/15/1582
• defines every fourth year as leap

 GJ
• historically accurate with Julian followed by Gregorian starting on 10/15/1582

 ISO - the default
• based on the ISO8601 standard
• same as Gregorian except for treatment of century

 Buddhist, Coptic, Ethiopic - not commonly used

• For most applications,
the default ISOCronology is appropriate
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JSR-310

• From Stephen Colebourne,
creator of Joda Time and JSR-310 spec. lead
 “JSR-310 is inspired by Joda-Time,

rather than a straight adoption of it.
Thus, there are key differences in the APIs.
JSR-310 isn't at the download and use stage yet.”

• To keep up with the status
of this standardization effort,
browse https://jsr-310.dev.java.net/


