
1

an open source web service toolkit for Java

Mark Volkmann
Object Computing, Inc.

2

General Web Service
Toolkit Functionality

Service Implementation
(can be a Java class, EJB, CORBA service, COM object, …)

WSDL

UDDISOAP

Client Proxy

SOAP

generate WSDL from
web service code

communicate with
a UDDI registry
via SOAP

publish a WSDL description of a
web service in a UDDI registry

retrieve a WSDL description of a
web service from a UDDI registry

generate client proxy code for
accessing a web service from WSDL

communicate with a
web service via SOAP

invoke a web service
through SOAP request
and response messages

Service
Implementation
Skeleton

manually supply
method code

3

Future Made Possible By WSDL

• Will be able to easily make calls between
any programming languages that can

– generate WSDL from web services implemented in the language
– generate client proxies in the language from WSDL

web service
implemented in
language x

WSDL
client proxy
implemented in
language y

generate
using
x toolkit

call using SOAP

generate
using
y toolkit

4

Apache eXtensible Interaction System
(Axis)

• An open source web service toolkit for Java
– supercedes Apache SOAP

• Incredibly flexible
– as will be seen when its architecture is reviewed later

• JAX-RPC support
– moving toward full implementation

– first open source JAX-RPC implementation

– only free alternative to Sun’s JAX-RPC reference implementation

• Download from http://xml.apache.org/axis
– current version is release candidate 1
– can also download nightly builds to get the latest features and bug fixes

5

Most Active Contributors

• IBM
– Russell Butek, Doug Davis, Glyn Normington,

Sam Ruby, Richard Scheuerle, James Snell

• Macromedia
– Glen Daniels, Tom Jordahl

• Unrealities
– Rob Jelinghaus

• Computer Associates
– Davanum Srinivas

6

Axis Features

• SOAP support
– full support of SOAP 1.1
– some support of SOAP 1.2

• will eventually support all of it

– some support for
• SOAP with Attachments
• Direct Internet Message Encapsulation (DIME) for binary XML

• UDDI support
– none
– can use UDDI4J from IBM developerWorks

• EJB support
– can access session bean methods as web services

• see org.apache.axis.providers.java.EJBProvider class

7

Axis Features (Cont’d)

• SOAP message monitoring
– TCP Monitor tool (tcpmon) monitors SOAP request/response messages

– can use with other SOAP toolkits as well

• Dynamic invocation
– doesn’t use WSDL
– JAX-RPC Call class

• invokes a web service operation
• need to supply SOAP router URL, service namespace,

operation name and parameters
• no compile-time parameter type checking (pass array of Objects)

1

2

8

Axis Features (Cont’d)

• Web service deployment
– instant deployment (JWS)

• simply copy a .java file to the “axis” web app. directory and
change the extension to .jws (for Java Web Service)

– custom deployment using a deployment descriptor
• uses Web Service Deployment Descriptor (WSDD) XML syntax

– specific to Axis

• allows more control for custom type mappings,
deployment without source code and more

– standalone HTTP server
• a weak alternative to servlet-based servers such as Tomcat

– self-contained web app.
• can add axis.jar and its helper jars to any WAR file to add web services

to a web app. that will run in any servlet engine

3

5

9

Axis Features (Cont’d)

• WSDL support
– Java2WSDL tool

• generates WSDL from Java service implementation classes

– WSDL2Java tool
• generates client stubs for type-safe invocations
• generates service skeletons for implementing services described by WSDL
• generates other necessary server-side files (more on these later)

– automatically generates WSDL for deployed web services
• clients can access by appending “?wsdl” to the web service URL

which is typically http://host:port/axis/service-name (JWS) or
http://host:port/axis/services/service-name (non-JWS)

4

10

Axis Features (Cont’d)

• Type mapping
– refers to serializing Java objects to and from XML in SOAP messages
– Java primitive types and registered Java Beans are handled automatically

• Java Beans are Java classes that follow certain method naming conventions

– can customize for specified Java classes

• by writing and registering custom serializers and deserializers

– maintained in a type mapping registry

• Proxy server support
– through these system properites

• http.proxyHost and http.proxyPort
• https.proxyHost and https.proxyPort

5

11

Axis Features (Cont’d)

• Pluggable architecture
– transport-specific, service-specific and global “handlers”

executed in a defined order

6

12

Interoperability

• Tests are run daily
• SOAPBuilders group defines the tests

– a group of SOAP implementation developers
interested in promoting SOAP interoperability

– have a Yahoo group at http://groups.yahoo.com/group/soapbuilders/
– test definitions are at http://www.whitemesa.com/interop.htm

• contains links to test results for many different SOAP implementations

• Apache SOAP and Axis
interop. test results
– managed by Sam Ruby from IBM
– posted at http://www.apache.org/

~rubys/ApacheClientInterop.html

13

Testing Axis Installation

• Steps
– start servlet engine

• for TOMCAT, this can be done from Windows Explorer by double-clicking
startup.bat in %TOMCAT_HOME%\bin

– from a web browser, visit http://localhost:8080/axis
– verify that a page like the following is displayed

runs happyaxis.jsp
(see next page)

can view the
WSDL of any
deployed service

14

Testing Axis Installation (Cont’d)

• Happy page
– a more detailed test of the installation
– visit http://localhost:8080/axis/happyaxis.jsp

could use in an HttpUnit test
or in an Ant get task to verify
that Axis is properly installed
during a project build

15

SOAP Message Monitoring

• TCP Monitor tool (tcpmon)
– intercepts client requests before they are sent to the endpoint

and displays them in the GUI
– forwards requests to endpoint
– intercepts server responses before they are returned to the client

and displays them in the GUI
– forwards responses to client

client tcpmon endpoint (router) web service

client-side server-side

listens on
localhost:listenPort

listens on
targethost:targetPort

1 2 3

6 5 4

tcpmon typically runs on localhost, but can run elsewhere

1

16

Starting tcpmon

• To start tcpmon
– insure that axis.jar is in CLASSPATH
– java org.apache.axis.utils.tcpmon [listenPort targetHost targetPort]

– if optional parameters are omitted, the following screen is displayed

To start tcpmon and a client
from Ant, use the parallel task.
See “monitor” target in
build.xml at end of this section
for an example.

fill in the
form and
click “Add”

can configure
multiple listenPorts
to support multiple
targetHost/targetPort
pairs

1

17

Using tcpmon

• Steps to use tcpmon
– modify client to send requests to localhost on listenPort

instead of targetHost on targetPort

– start tcpmon with

• listenPort set to port where clients send requests

• targetHost set to the endpoint host of web service

• targetPort set to the endpoint port of the web service

– start client

1

18

tcpmon Example Screen

select a row to
view its request
and response

can save request
and response
message to a file,
but can’t reload
them

can edit and
resend request
messages;
if length changes,
update value of
Content-Length
HTTP header

1

19

Dynamic Invocation

• Uses Axis implementation of JAX-RPC
– org.apache.axis.client.Call implements javax.xml.rpc.Call
– org.apache.axis.client.Service implements javax.xml.rpc.Service

• Only need to know these details
– SOAP router URL

• also called the target endpoint address

– service namespace
• required so it can be specified in Axis-generated SOAP requests

– operation name
– operation parameter types
– operation return type

depending on the service,
knowing these may not be necessary

2

can get this information from a
WSDL description of the service

20

Dynamic
Invocation

import javax.xml.rpc.namespace.QName;

import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

public class Client {

// The values of the following constants were obtained from the WSDL

// at http://www.xmethods.net/sd/TemperatureService.wsdl.

private static final String NAMESPACE = "urn:xmethods-Temperature";

private static final String OPERATION = "getTemp";

public static void main(String[] args) throws Exception {

if (args.length < 2) {

System.err.println("usage: java Client {target-url} {zip-list}");

System.err.println("where the zipcodes are separated by spaces");

System.exit(1);

}

This is an example of invoking a web service without using WSDL.
It’s much easier to use generated client stubs!
The target URL, operation name and input body namespace
can be obtained from a WSDL service description.
The target URL for this service is
http://services.xmethods.net:80/soap/servlet/rpcrouter.

urn stands for
uniform resource name

2

21

Dynamic Invocation (Cont’d)
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new java.net.URL(args[0]));
call.setOperationName(new QName(NAMESPACE, OPERATION));

call.addParameter("zipcode",
org.apache.axis.encoding.XMLType.XSD_STRING,

javax.xml.rpc.ParameterMode.IN);

call.setReturnType(org.apache.axis.encoding.XMLType.XSD_FLOAT);

// For each zipcode specified on the command line ...

for (int i = 1; i < args.length; i++) {

String zipcode = args[i];

Object temperature = call.invoke(new Object[] {zipcode});
System.out.println("current temperature in " + zipcode +

" is " + temperature);

}

}

}

JAX-RPC
objects

Some services don’t automatically encode the return type.
This service does. If not, this is how the client can set it.

Parameters are named arg0, arg1, … by default.
This allows the client to give them names and data types the service expects.

optional
steps
depending
on the
service

passing this as a command-line
argument instead of hard-coding
it allows easy use of tcpmon

2

22

Generated HTTP SOAP Request
POST /soap/servlet/rpcrouter HTTP/1.0

Content-Length: 518

Host: services.xmethods.net

Content-Type: text/xml; charset=utf-8
SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<ns1:getTemp xmlns:ns1="urn:xmethods-Temperature">
<zipcode xsi:type="xsd:string">90210</zipcode>

</ns1:getTemp>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

By default, Axis specifies
the service to be invoked by
the namespace of the first
element in the SOAP Body.

operation

It would sure reduce message sizes
if these namespace definitions were
known by default, but that wouldn’t
be standard XML practice.

2

23

Generated HTTP SOAP Response
HTTP/1.0 200 OK
Date: Sat, 23 Mar 2002 13:25:59 GMT

Content-Length: 465

Content-Type: text/xml; charset=utf-8
Status: 200

Servlet-Engine: Lutris Enhydra Application Server/3.5.2

(JSP 1.1; Servlet 2.2; Java 1.3.0; Linux 2.4.7-10smp x86;

java.vendor=IBM Corporation)

Set-Cookie: JSESSIONID=cdDkeXGxW5F4cbgFYEjYHnOl;Path=/soap

Server: Enhydra-MultiServer/3.5.2

Via: 1.0 C6100-2 (NetCache NetApp/5.1R2D20)

HTTP headers

2

24

Generated HTTP SOAP Response
(Cont’d)

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>
<ns1:getTempResponse
xmlns:ns1="urn:xmethods-Temperature"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<return xsi:type="xsd:float">55.0</return>
</ns1:getTempResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

HTTP content

2

25

Deploying Web Services Using JWS

• Steps
– if not there already,

copy “axis” directory in “webapps” directory of the Axis distribution
to the deployment directory of a server that supports Java servlets

• for Tomcat, this is the “ webapps” directory

– copy any Java source file that implements a web service
into this “ axis” directory

• no special code is required
• all public, non-static methods are exposed
• if the class is in a package, copy it to the appropriate subdirectory

– change the file extension from “.java” to “.jws”

– to view the WSDL of a JWS web service,
enter the following URL in a web browser
http://host:port/axis/pkg-subdirs/file-name.jws?wsdl

optional part

3

26

Example JWS
• Source file BasicMath.java

package com.ociweb.math;

public class BasicMath {

public int add(int n1, int n2) {

return n1 + n2;

}

}

• Steps to deploy this
– create com/ociweb/math directories under axis directory

in Tomcat’s webapps directory

– copy BasicMath.java to that directory
– rename it to BasicMath.jws

• Access the WSDL with
– http://localhost:8080/axis/com/ociweb/math/BasicMath.jws?wsdl
– can generate client stubs using WSDL2Java and this URL (covered soon)

all the magic is provided by
JWSHandler, JWSProcessor
and RPCProvider

3

27

Invoking JWS Services

• Two options
– use Dynamic Invocation covered earlier
– use generated client stubs covered later

• an example of using one follows

import com.ociweb.math.*;

public class BasicMathClient {

public static void main(String[] args)

throws java.rmi.RemoteException, javax.xml.rpc.ServiceException {

BasicMathService service = new BasicMathServiceLocator();
BasicMath stub = service.getBasicMath();
System.out.println(stub.add(19, 3));

}

}

3

28

Generating WSDL
From Java Interfaces and Classes

• Two ways
– using JWS (covered earlier)
– using Java2WSDL

• Java2WSDL
– to generate WSDL for the class MyClass (can also use an interface)

in the package mypkg using the namespace urn:MyClass

java org.apache.axis.wsdl.Java2WSDL

-oMyClass.wsdl

-lhttp://localhost:8080/axis/services/MyClass

-nurn:MyClass

-pmypkg=urn:MyClass

mypkg.MyClass

output

target endpoint

namespace

pkg to ns mapping

class or interface

must be in CLASSPATH

can have any number of these

generated WSDL defines types
for all classes referenced

4

29

Client Stubs

• Represent the service on the client-side
– a.k.a. proxies

• Generated from WSDL using WSDL2Java
– WSDL can be accessed locally or from a remote URL
– if Java service implementation already exists,

WSDL can be generated using Java2WSDL

• Provide type-safe invocation of web services
– rather than passing parameters as an array of Objects,

as is done with dynamic invocation,
calls are made using an interface that specifies parameter types

– rather that receiving an Object result,
the interface specifies the actual result type

– types are checked at compile-time
– example usage was shown on page 27

4

30

WSDL2Java Generates

• For each <type>
– class representation called type-name.java
– holder class called type-nameHolder.java,

if it is used as an inout or out parameter

• For each <porttype>
– interface called port-name.java

• describes porttype operations
• called the Service Definition Interface (SDI)

• holder classes support passing
parameters by references,
something that Java doesn’t
directly support

• pre-built holder classes for
primitive types are in the
javax.xml.rpc.holders package

WARNING: Watch out for WSDL2Java
overwriting existing source files with
type-name.java and port-name.java files
if you generated the WSDL using Java2WSDL!

4

31

WSDL2Java Generates (Cont’d)

• For each <binding>
– stub class called port-nameBindingStub.java

• implements port-name.java
• used by clients to invoke web service methods
• uses JAX-RPC Service and Call interfaces

– implementation class shell called port-nameSoapBindingImpl.java
• implements port-name.java
• web service method implementations to be completed by developer
• won’t be overwritten if it already exists
• don’t need this if a class implementing the operations already exists

– optionally, a skeleton class called port-nameSoapBindingSkeleton.java
• implements port-name.java
• server-side counterpart to port-nameServiceBindingStub
• forwards all calls to service methods to implementation methods
• benefit is questionable; calls can go directly to your implementation instead

only has “ SOAP” in the name
when the transport is SOAP

4

• neither of these
is needed

• see p. 35 for
steps to
bypass them

32

WSDL2Java Generates (Cont’ d)

• For each <service>
– interface called port-nameService.java

• describes methods for obtaining porttype interface implementations
– one get method for each port defined in the service

– locator class called port-nameServiceLocator.java
• implements port-nameService.java (above)
• locates an implementation of the service

using the URI specified in the WSDL or a specified URI
• creates an instance of the binding stub class

and returns it as the porttype interface type

– optionally, a JUnit test class called port-nameServiceTestCase.java
• for testing methods in the porttype interface
• test methods must be completed manually

4

33

WSDL2Java Generates (Cont’ d)

• For each WSDL file
– deployment descriptor called deploy.wsdd

• used by AdminClient to deploy the service
• implementation class referred to will either be

the skeleton class (if skeleton generated)
or the impl. class (if no skeleton generated)

• can change to refer to your own class

– undeployment descriptor called undeploy.wsdd
• used by AdminClient to undeploy the service

-Strue to generate skeleton class
-Sfalse to suppress it (default)

more on WSDD later

4

34

Relationships Between Generated Files

Port Type interfaceService interface

Binding Stub classService Locator class

returns

creates
and

returns

Steps to use in client code
1) create instance of Service Locator

(hold in variable of Service interface type)
2) use it to obtain a Binding Stub

(hold in variable of Port Type interface type)
3) invoke web service methods on it

implements implements

this was done in
BasicMathClient

Binding Skeleton class

Binding Impl class

calls

client-side
only

server-side
only

both
client and
server-side

Location Key

can call
using SOAP

4

35

Deploying Without Using Generated
Skeleton and Impl Classes

• Can deploy a standard Java class
without using generated skeleton and impl classes

– matches what is done with JWS

• Still run WSDL2Java
– to generate service interface, service locator class,

binding stub class and deployment descriptors

• Modify generated deploy.wsdd file
– change value of the className parameter to the service

to refer to your class instead of the generated skeleton class
<parameter name="className" value="HERE"/>

4

36

Using WSDL2Java

• Command
java org.apache.axis.wsdl.WSDL2Java wsdl-uri

• Option highlights
-Nnamespace=package

maps a namespace to a Java package
-o dir specifies output directory where generated files should be written
-p pkg overrides default package name for generated classes
-s generates service-side interfaces and classes required by

a service implementation, including a skeleton class
-t generates JUnit test case for the web service
-v prints a message about each file that is generated

package of generated files defaults to reverse of server name
for example, server www.xmethods.net uses package net.xmethods.www

Generated test code doesn’ t sufficiently exercise the web service. Add code to it.
CAUTION: Save modified test code somewhere else
because WSDL2Java will overwrite it if it is run again!

-S option controls
this (see page 33)

4

37

Client Stub Invocation
(uses same service as earlier dynamic invocation example)

import net.xmethods.www.*;

public class Client {

public static void main(String[] args) throws Exception {

if (args.length == 0) {

System.err.println("usage: java Client {target-url} {zip-list}");

System.err.println("where the zipcodes are separated by spaces");

System.exit(1);

}

package of generated files

4

38

Client Stub Invocation (Cont’ d)
TemperatureService service = new TemperatureServiceLocator();
TemperaturePortType stub =

service.getTemperaturePort(new java.net.URL(args[0]));

for (int i = 1; i < args.length; i++) {

String zipcode = args[i];

float temperature = stub.getTemp(zipcode);
System.out.println("current temperature in " + zipcode +

" is " + temperature);

}

}

}

Don’t have to pass target URL,
but it’ s useful for using tcpmon.

Notice that parameters are not passed to the service in an array of
Objects and the proper return type is returned instead of an Object.

4

39

Customized Deployment

• Benefits over JWS deployment
– deploy/undeploy multiple services
– deploy/undeploy handlers
– deploy classes with no source
– custom type mapping

• Server-side classes
– these are web service implementation classes and classes they use
– when using Axis webapp

• copy .class files to webapps/axis/WEB-INF/classes
• copy .jar files to webapps/axis/WEB-INF/lib

– a problem if different web services want to use
different versions of a class or JAR

• solution is to deploy services in different web apps. that each contain Axis

5

40

Customized Deployment (Cont’ d)

• Web Service Deployment Descriptor (WSDD)
– specifies components to be deployed and undeployed

• services, handlers and more

– specifies type mappings
– download Axis source to get DTD and XML Schema for WSDD

• in java/wsdd directory

• AdminClient uses WSDD
– to deploy or undeploy components, pass it a WSDD file

java org.apache.axis.client.AdminClient filename.wsdd

• modifies server-config.wsdd in the axis webapp WEB-INF directory

– to list deployed components
java org.apache.axis.client.AdminClient list

• outputs server-config.wsdd which is used when the server is restarted
to redeploy all previously deployed services

5

typically called
deploy.wsdd or
undeploy.wsdd

41

WSDD To Deploy And Undeploy

• Generated by WSDL2Java
• Example to deploy a service

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<service name="CarQuote" provider="java:RPC">
<parameter name="className"

value="com.ociweb.auto.CarQuoteImpl"/>
<parameter name="allowedMethods" value="*"/>

</service>
</deployment>

• Example to undeploy a service
<undeployment xmlns="http://xml.apache.org/axis/wsdd/">

<service name="CarQuote"/>

</undeployment>

makes all public, non-static methods of
the class available; can be a whitespace-
delimited list of method names

5

identifies the pivot handler to be used;
Axis provides three: RPC, MSG and EJB;
MSG is for message or document-centric
calls as opposed to RPC-style calls

don’ t need to have
source for this class

42

WSDD To Register a Java Bean
For Automatic Serialization

• Example for the Car class
<deployment xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<service name="CarQuote" provider="java:RPC">

<parameter name="className"

value="com.ociweb.cardealer.CarQuoteImpl"/>

<parameter name="allowedMethods" value="getQuote"/>

</service>

<beanMapping xmlns:ns="urn:CarQuote" qname="ns:Car"
languageSpecificType="java:com.ociweb.cardealer.Car"/>

</deployment>

beanMapping is needed if a Car object is
passed to or returned from a web service operation

appropriate when
the class follows
Java Bean conventions
and all of its properties
should be serialized

5

43

Custom Type Mapping

• Steps
– write serializer class

• implements org.apache.axis.encoding.Serializer

– write serializer factory class that returns serializer instances
• implements org.apache.axis.encoding.SerializerFactory

– write deserializer class
• extends org.apache.axis.encoding.DeserializerImpl

– write deserializer factory class that returns deserializer instances
• implements org.apache.axis.encoding.DeserializerFactory

– register them using WSDD and the Admin client
<typeMapping
xmlns:ns="urn:CarQuote"

qname="ns:Car" type="java:com.ociweb.cardealer.Car"
serializer="com.ociweb.cardealer.CarSerializerFactory"
deserializer="com.ociweb.cardealer.CarDeserializerFactory"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

add as child of deployment element

5

44

WSDD DTD Highlights
(attributes omitted)

<!ELEMENT deployment (documentation?, globalConfiguration?,
(beanMapping|typeMapping|chain|handler|transport|service)*)>

<!ELEMENT chain (documentation?, parameter*, handler*)>

<!ELEMENT documentation (#PCDATA)>

<!ELEMENT faultFlow (documentation?, parameter*, (chain|handler)*)>

<!ELEMENT globalConfiguration (documentation?, parameter*, transport*,
requestFlow?, provider, responseFlow?, faultFlow*)>

<!ELEMENT handler (documentation?, parameter*)>

<!ELEMENT operation EMPTY>

<!ELEMENT parameter EMPTY>

<!ELEMENT provider (documentation?, parameter*, operation*)>

<!ELEMENT requestFlow (documentation?, parameter*, (chain|handler)*)>

<!ELEMENT responseFlow (documentation?, parameter*,
(chain | handler)*)>

<!ELEMENT service (documentation?, parameter*, typeMapping*,
requestFlow?, provider, responseFlow?, faultFlow*)>

<!ELEMENT transport (documentation?, parameter*,
requestFlow?, responseFlow?, faultFlow*)>

<!ELEMENT beanMapping (documentation?)>

<!ELEMENT typeMapping (documentation?)>

no specified
order for these

root element

can go inside or outside
service elements depending on
whether they are specific to a service

5

45

Axis Components
• Axis engines

– coordinate message processing by invoking a series of handlers
– run on server and optionally on client

• Handlers
– operate on request and response messages

• can examine a message and modify it before passing it on
– can invoke software outside Axis
– example uses

• authentication, compression, encryption, logging, message transformation

• Chains
– collections of handlers that are executed in a specified order
– a chain is itself handler, allowing chains to contain other chains

• Provider (a.k.a. “ pivot point” handler)
– point in the chain where handlers switch from

processing the request to processing the response
– invokes web service operation

Composite
pattern

6

see diagrams coming up

somewhat similar to
Java servlet Filters

46

Axis Components (Cont’ d)

• Transports
– handle message protocol conversions

• request from client to Axis Engine (for example, HTTPTransport)
• response from Axis Engine to client

• Serializers/Deserializers
– convert Java data (primitives and objects) to and from XML

• Deployment/Configuration
– deployment refers to component registrations

• services, handlers, chains, transports,
bean mappings and type mappings (register serializers and deserializers)

– configuration refers to setting Axis options
• such as security controls for remote administration

– Administration subsystem provides the easiest way to do this
• pass WSDD file to AdminClient

6

47

web service specific chain

Axis Server-side Architecture

client
transport
request
chain

global
request
chain

response
handlers

request
handlers

global
response

chain

transport
response

chain

Axis engine
(AxisServer)

provider
(a.k.a. pivot)

web service

1 2 3

5 4

typically on same host

6

transport
listener

a common
transport listener
is AxisServlet

• configured by server-config.wsdd in webapps/axis/WEB-INF which is modified by AdminClient
• actually there is a single transport chain that is considered to have two sides
• an Axis “ service” is a “ targeted chain” (can have request handlers, a pivot handler and response handlers)

48

Configuring Handlers With WSDD

• Three kinds of handler elements
– unnamed - <handler type="java:full-class-name"/>
– named - <handler name="name" type="java:full-class-name"/>

• can be used in multiple chain/phases

– reference to named - <handler type="name"/>

• Handlers are only added to chains through deployment
– not dynamically at run-time

• Three chains
– transport, global and service

• Two phases
– request and response

six places for
a handler to
be invoked

6

49

Configuring Handlers With WSDD
(Cont’ d)

• Global handlers
<globalConfiguration>

<requestFlow> handler-element* </requestFlow>

<responseFlow> handler-element* </responseFlow>

</globalConfiguration>

• Transport-specific handlers
<transport name="http">

<requestFlow> handler-element* </requestFlow>

<responseFlow> handler-element* </responseFlow>

</transport>

• Service-specific handlers
<service name="service-name" provider="java:RPC">

<requestFlow> handler-element* </requestFlow>

<responseFlow> handler-element* </responseFlow>

</transport>

typical value

6

value to use for HTTP transport

Handlers in the request flow execute before the pivot.
Handlers in the response flow execute after the pivot.

50

Exposing EJBs as Web Services

• Currently only works with stateless session beans
• Don’ t have to write any code!
• Steps

– deploy EJB in a J2EE application server
– create a WSDD file for deploying a corresponding Axis service

• see details on next page

– run AdminClient on the WSDD to deploy the Axis service
– client code to invoke the service is identical

to code for invoking non-EJB web services

51

Exposing EJBs as Web Services
(Cont’ d)

• WSDD details
<service name="service-name" provider="java:EJB">
<parameter name="jndiURL"

value="naming-service-url"/>

<parameter name="jndiContextClass”
value="initial-context-factory-class-name"/>

<parameter name="beanJndiName"
value="ejb-jndi-name"/>

<parameter name="homeInterfaceName"
value="home-interface-name"/>

<parameter name="remoteInterfaceName"
value="remote-interface-name"/>

<parameter name="className"
value="remote-interface-name"/>

<parameter name="allowedMethods"
value="list-of-methods-to-expose"/>

</service>

verify need to
specify these

this is how it knows
to use EJBProvider

52

Summary - Axis Pros and Cons

• Pros
– great architecture
– free and open source
– well supported by IBM committers
– supports JAX-RPC API
– supports SOAP with Attachments API for Java (SAAJ)
– large number of unit tests
– regularly tested for interoperability

• Cons
– significant changes are still being made

• doesn’ t yet support asynchronous message processing
• doesn’ t provide explicit support for SOAP intermediaries

– can be implemented with custom handlers

– open source
• some see this as a positive, while others see it as a negative

SAAJ 1.1 specification is a
maintenance release of the
JAXM 1.0 specification

