

 1

Groovy1

Scripting For Java

Mark Volkmann, Partner
Object Computing, Inc.

3/21/04
Became a JSR on 3/16/04!

See JSR 241: The Groovy Programming Language.

Groovy2

What’s is Groovy?

• Open-source scripting language used with JDK 1.4+
– adds some features of Ruby and Python to Java
– implemented in Java

• Created by James Strachan and Bob McWhirter
– James is also involved in the development of many other open source

products including Jelly, dom4j, Jaxen, Betwixt and Maven
• often asked “Wouldn’t it be groovy if Java … ?”

– Bob created Jaxen and Drools (an open source, object-oriented, Java rules engine)

• Groovy scripts
– can be compiled to Java bytecode that can be invoked from normal Java classes

• groovyc compiles both Groovy scripts and Java source files

– can use normal Java classes

• Features include
– dynamic typing, closures, easy object navigation

and more compact syntax for working with Lists and Maps

“Groovy is designed to
help you get things done
on the Java platform in a
quicker, more concise
and fun way - bringing the
power of Python and Ruby
inside the Java Platform.”

as of 3/11/04 there
were 13 committers

these features and more
are described in detail later

 2

Groovy3

How Does Groovy Compare To ...

• Java
– Groovy adds optional dynamic typing, XPath-like object navigation,

closures, syntactic sugar and much more

• BeanShell
– BeanShell is completely interpreted

as opposed to Groovy which is completely compiled
– BeanShell doesn’t add methods to JDK classes

• such as special forms of collection iteration

• Ruby & Python
– Groovy generates Java bytecode that can be used by Java classes
– Groovy can use Java classes; Ruby/Python can’t easily do this
– Ruby provides a “mixin” capability (Groovy will add this soon)

Groovy4

Downloading and Installing Groovy

• To download
– visit http://groovy.codehaus.org/
– click the “Download” link in the top navigation bar
– click the “this site” link
– click a release to download

• To install
– unzip downloaded file
– set GROOVY_HOME environment variable

• to directory that was unzipped
– add to PATH environment variable

$GROOVY_HOME/bin (UNIX) or
%GROOVY_HOME%\bin (Windows)

 3

Groovy5

Downloading and Installing
Latest From CVS

• To download latest source from CVS
– visit http://groovy.codehaus.org/cvs-usage.html to see options
– if behind a firewall, consider using CVSGrab

• rootURL is http://cvs.groovy.codehaus.org/viewcvs.cgi/
• packagePath is groovy/groovy-core

• To install
– download and install Maven (http://maven.apache.org)
– cd to the directory where Groovy was downloaded
– from a command-prompt, enter “maven”
– set GROOVY_HOME environment variable

• to download-dir/target/install
– add to PATH environment variable

$GROOVY_HOME/bin (UNIX) or
%GROOVY_HOME%\bin (Windows)

Groovy6

Running Groovy

• Three ways to execute Groovy scripts
– interactive shell

• groovysh

• enter any number of script lines
• enter the command execute

to execute them
– interactive Swing console

• groovyConsole

• enter code in bottom of window
• select Run from Actions menu to execute
• output appears in top of window
• can open and save scripts using File menu

– executing a script file
• groovy script-name.groovy

In all of these cases, the script lines are converted to a Java
class and compiled. The resulting bytecode is then executed.

Compiling
Groovy scripts
to .class files is
discussed later.

 4

Groovy7

Some Groovy Syntax Details

• Goal is to eventually support all Java syntax
• Differences from Java

– semicolons at ends of statements are optional
– parentheses around method parameters are optional

• unless there are no parameters or the meaning would be ambiguous
• parentheses are required in constructor calls

– using “return” is sometimes optional
• in methods that return a value, if the last statement

before the closing brace is reached then its value is returned
• in the future, this may be change to return value of last statement evaluated

– Groovy properties and methods are public by default
• not protected like in Java

– imports
• automatically imports classes in java.lang, groovy.lang & groovy.util

Some people prefer to
always use parentheses.
This presentation tends to
omit them when possible.

Groovy8

Dynamic Typing

• Types are optional for
– variables
– properties
– method/closure parameters
– method return types

• Take on the type of whatever was last assigned to them
– different types can be used later

• Any type can be used, even primitives through auto-boxing
• Boxing and unboxing

– many type coercions occur automatically when needed
– such as conversions between these types

• String, primitive types (like int) and type wrapper classes (like Integer)
– allows primitives to be added to collections

closures are covered later

 5

Groovy9

Added Object Methods

• dump
– returns a string of the form

<class-name@hashcode property-name=property-value ...>

– example - <Car@ef5502 make=Toyota model=Camry>

• print and println
– these static methods print the toString value of an object
– examples - print car; println car

• invokeMethod
– dynamic method invocation using reflection
– syntax - object.invokeMethod(method-name, argument-array)
– example

s = 'abcabc' // a java.lang.String
method = 'indexOf'

args = ['b', 2]

println s.invokeMethod(method, args) prints 4

See http://groovy.codehaus.org
/groovy-jdk.html

for details on all added methods.

don’t have to get
a Method object

Groovy10

Groovy Strings

• Literal strings can be surrounded with
single or double quotes

• When double quotes are used,
they can contain embedded values
– syntax is ${expression}

• just like Ruby except $ is used instead of #

• Strings surrounded by double quotes
that contain at least one embedded value
are represented by a groovy.lang.GString
– GString extends GroovyObjectSupport extends Object

• Other strings are represented by a java.lang.String
javadoc for Groovy classes like
groovy.lang.GString can be found at
http://groovy.codehaus.org/apidocs/

 6

Groovy11

GStrings

• Created when a literal string in double-quotes
contains embedded values
– embedded values are evaluated lazily
– can iterate over the text and values within a GString

to perform special processing

• Example
greeting = "Hello ${person.name}"

• Automatically coerced to java.lang.String
when needed

• Very useful for implementing toString methods
String toString() { "${name} is ${age} years old."

}

Groovy12

Multi-Line Strings

• Created in three ways
– these are equivalent
s = " This string

 spans three \"lines\"

 and contains two newlines."

s = """ This string

 spans three "lines"

 and contains two newlines."""

s = <<<EOS

 This string

 spans three "lines"

 and contains two newlines.

EOS

called a “here-doc”;
any delimiter can be used

the last newline is NOT retained

 7

Groovy13

Added String Methods

• contains
– determines whether a string contains a substring
'Groovy'.contains('oo') returns true

• count
– counts occurrences of a substring within a string
'Groovy Tool'.count('oo') returns 2

• tokenize
– tokenizes a string using a given delimeter and returns a list of the tokens
– delimiter parameter is optional; default is whitespace characters
'apple^banana^grape'.tokenize('^')

returns ['apple', 'banana', 'grape']

currently defined in
src/main/org/codehaus/
groovy/runtime/
DefaultGroovyMethods.java

Groovy14

Added String Operators (Cont’d)

• minus
– removes first occurrence of a substring from a string
'Groovy Tool' - 'oo' returns 'Grvy Tool'

• multiply
– repeats a string a given number of times
'Groovy' * 3 returns 'GroovyGroovyGroovy'

 8

Groovy15

Regular Expressions

• Uses classes in java.util.regex package
– Pattern objects represent a compiled regex

• create with Pattern.compile("pattern")
• javadoc for this class describes regular expression syntax

– Matcher objects hold the results of matching a Pattern against a String
• create with pattern.matcher("text")
• determine if text matches pattern with matcher.matches()

• Supported by three Groovy operators
– ~"pattern" - creates a Pattern object

• equivalent to Pattern.compile("pattern")
– "text" =~ "pattern" - creates a Matcher object

• equivalent to Pattern.compile("pattern").matcher("text")
– "text" ==~ "pattern" - returns a boolean match indication

• equivalent to Pattern.compile("pattern").matcher("text").matches()

Groovy16

Regular Expressions (Cont’d)

• Example
pattern = "\\d{5}" // matches zip codes (5 digits)
text = "63304" // a zip code

println text ==~ pattern

m = text =~ pattern
println m.matches()

p = ~"\\d{5}"
m = p.matcher(text)

println m.matches()

putting a literal \ in a Java string requires \\

~ operator requires
a literal string;
can’t use a variable

all of these
print “true”

see javadoc of
Pattern and Matcher
for additional methods

To see if a single string matches a pattern

To get details of how a single string matches a pattern (through Matcher object)

To match multiple strings against the same pattern (more efficient)

 9

Groovy17

Groovy Scripts

• Source files with “.groovy” extension
• Can contain (in any order)

– loose statements
– method definitions not associated with a class
– class definitions

• Example
println 'loose statement'

myMethod 'Mark', 19
println new MyClass(a1:'Running', a2:26.2)
def myMethod(p1, p2) {
 println "myMethod: p1=${p1}, p2=${p2}"

}

class MyClass {
 a1; a2

 String toString() { "MyClass: a1=${a1}, a2=${a2}" }

}

loose statements

method definition

class definition

Groovy18

Groovy Scripts (Cont’d)

• Method and class definitions
do not have to appear before their first use

• Loose methods get compiled to static methods
in the class that corresponds to the script file
– for example, a loose method named foo in a script called Bar.groovy

will get compiled to a static method named foo in the class Bar

• Loose statements are collected in a run method
that is invoked by a generated main method

• Signature for optional main method in Groovy classes
static void main(args)

• Currently scripts cannot invoke code in other scripts
unless they are compiled and imported
– this should be fixed soon

 10

Groovy19

Script Execution With “groovy”

• When a script is executed with “groovy” the
Java application groovy.lang.GroovyShell is executed
– parses the script (using a custom lexer and parser)
– creates a class with the same name as the source file in memory

(uses a custom Abstract Syntax Tree (AST) parser)
– all loose statements are collected into a run method
– a main method that invokes the run method is generated
– this class is compiled to Java bytecode in memory

• using ObjectWeb ASM (http://asm.objectweb.org)
– the main method is executed

• Reflection used for calls to constructors
and private/protected methods
– negatively impacts performance
– likely to change in the future

“The ASM name does not mean anything.
It is just a reference to the __asm__ keyword
in C, which allows some functions
to be implemented in assembly language.”

Groovy20

Statement Execution With “groovysh”

• When statements are entered into “groovysh”
 groovy.ui.InteractiveShell is executed
– enter any number of script lines
– enter the command execute
– the previously entered lines are compiled and executed

 11

Groovy21

Compiling Groovy

• To compile a Groovy script to bytecode
– groovyc script-name.groovy

– creates script-name.class
– if there are loose statements in the script,

this class will have a main method that invokes a run method
that executes all the loose statements in order

– there’s even a custom Ant task to do this
• the class is org.codehaus.groovy.ant.Groovyc

• To run this class as a Java application,
CLASSPATH must contain
– directory containing generated .class file
– potentially all JAR files in GROOVY_HOME/lib

• at a minimum, groovy*.jar and asm*.jar are needed

Groovy22

Operator Overloading

• Supports operator overloading for a fixed set of operators
• Each operator is mapped to a particular method name

– see mappings on next page

• Implementing these methods in your classes
allows corresponding operators to be used
with objects from those classes
– can be overloaded to work with various parameter types

 12

Groovy23

Operator To Method Mappings

• Comparison operators
a == b maps to a.equals(b)
a != b maps to !a.equals(b)
a === b maps to a == b in Java
a <=> b maps to a.compareTo(b)
a > b maps to a.compareTo(b) > 0
a >= b maps to a.compareTo(b) >= 0
a < b maps to a.compareTo(b) < 0
a <= b maps to a.compareTo(b) <= 0

• Other operators
a + b maps to a.plus(b)
a - b maps to a.minus(b)
a * b maps to a.multiply(b)
a / b maps to a.divide(b)
a++ and ++a maps to a.increment(b)
a-- and --a maps to a.decrement(b)
a[b] maps to a.get(b)
a[b] = c maps to a.put(b, c)

same objectreturns an int
less than 0 if a < b,
greater than 0 if a > b,
and 0 if a is equal to b

could be a source
of confusion for
Java developers!

comparison operators handle null values and
never generate a NullPointerException;
null is treated as less than everything else

Groovy24

Groovy Beans

• Accessor methods automatically generated
– classes, properties and methods are public by default
– public/protected properties result in private fields

with public/protected get/set methods that can be overridden

• Groovy Example
class Car {

 String make

 String model

}

• Equivalent Java
public class Car {

 private String make;

 private String model;

 public String getMake() { return make; }
 public String getModel() { return model; }
 public void setMake(String make) {
 this.make = make;

 }

 public void setModel(String model) {
 this.model = model;

 }

}

For properties that
are explicitly declared
to be private,
get and set methods
are not generated.

 13

Groovy25

Groovy Beans (Cont’d)

• Generated class
– extends java.lang.Object
– implements groovy.lang.GroovyObject

• adds methods getProperty, setProperty,
getMetaClass, setMetaClass,
and invokeMethod

• groovy.lang.MetaClass allows methods to be added at runtime
– but not yet usable for this

• Objects can be created using named parameters
– example

myCar = new Car(make:'Toyota', model:'Camry')

– calls no-arg constructor and then a set method for each property

Groovy26

Groovy Closures

• A closure is a snippet of code that
– optionally accepts parameters
– can access and modify variables that are in scope

when the closure is created
– makes variables created inside the closure available

in the scope where the closure is invoked
– can be held in a variable and passed as a parameter

• Syntax
{ |comma-separated-parameter-list| statements }

• Example
closure = { |bill, tipPercentage| bill * tipPercentage / 100 }

tip = closure.call(25.19, 15)
tip = closure(25.19, 15) // equivalent to previous line

• Passing wrong number of parameters
– results in IncorrectClosureArgumentsException

 14

Groovy27

Groovy Closures (Cont’d)

• Keyword it
– for closures with one parameter, the parameter list can be omitted

and it can be referred to in statements with keyword it
– the following closures are equivalent

{ |x| println x }

{ println it }

• Closures can be passed as parameters to methods
– particularly useful in list, map and string methods (covered later)
– see example on next page

• Each closure is compiled into a new class
– that extends groovy.lang.Closure

Groovy28

Groovy Closures (Cont’d)

• Example of a method that takes a Closure parameter
class Team { name; wins; losses }

teams = []

teams.add new Team(name:'Rams', wins:12 , losses:4)

teams.add new Team(name:'Raiders', wins:4 , losses:12)

teams.add new Team(name:'Packers', wins:10 , losses:6)

teams.add new Team(name:'49ers', wins:7 , losses:9)

def List myFind(List list, Closure closure) {
 List newList = []

 for (team in list) {

 if (closure.call team) newList.add team
 }

 newList

}

winningTeams = myFind(teams) { it.wins > it.losses }
winningTeams.each { println it.name }

output is
Rams
Packers

these parentheses are required
because it is followed by a closure

There’s no need to write this method
since the List class already has a
findAll method. To use it,
winningTeams =
 teams.findAll
 { it.wins > it.losses }

This is written as a "loose method",
but it also could be written
as a method of some class.

 15

Groovy29

Groovy Lists

• Instances of java.util.ArrayList
• Example

cars = [new Car(make:'Honda', model:'Odyssey'),

 new Car(make:'Toyota', model:'Camry')]

println cars[1] // refers to Camry

for (car in cars) { println car }

class Car {

 make; model

 String toString() { "Car: make=${make}, model=${model}" }

}

invokes no-arg constructor
and set methods

invokes Car toString method

use negative index to
count from end of List

Groovy30

Groovy Lists (Cont’d)

• Create empty lists with []
cars = []

• Add items to lists in two ways
cars.add car

cars << car

• Lists can be created from arrays with array.toList()
• Arrays can be created from lists with list.toArray()

 16

Groovy31

Added List Methods

• count
– counts the elements in a list that are equal to a given object
[1, 2, 3, 1].count(1) returns 2

• immutable
– creates an immutable copy of a collection

• using the static unmodifiableList method in java.util.Collections
list = [1, 2, 3].immutable()

list.add 4 throws java.lang.UnsupportedOperationException

• intersect
– creates a list containing the common elements of two lists
[1, 2, 3, 4].intersect([2, 4, 6]) returns [2, 4]

currently defined in
src/main/org/codehaus/
groovy/runtime/
DefaultGroovyMethods.java

Groovy32

Added List Methods (Cont’d)

• join
– concatenates list item toString values with a given string between each
– example - place a caret delimiter between all the strings in a List
['one', 'two', 'three'].join('^') returns "one^two^three”

• sort
– sorts list elements and creates a new list
– accepts a java.util.Comparator or a closure for custom ordering

fruits = ['kiwi', 'strawberry', 'grape', 'banana']

fruits.sort() returns [banana, grape, kiwi, strawberry]

fruits.sort { |l, r| return l.length() <=> r.length()}

returns [kiwi, grape, banana, strawberry] Here sort is a method that
takes a closure as a parameter.
There are many methods
in Groovy that do this.

 17

Groovy33

Added List Methods (Cont’d)

• More on sort
– can easily sort Groovy Beans on multiple properties
– suppose there is a Player bean with properties name, age and score
– to sort a list of these beans called players

based on age and then score

players.sort { [it.age, it.score] }

Groovy34

Added List/String Methods

• min / max
– finds the minimum or maximum list item or string character
– accept a java.util.Comparator or a closure for custom ordering
– example - find the minimum and maximum number in a list
[5, 9, 1, 6].min() returns 1

[5, 9, 1, 6].max() returns 9

• reverse
– reverses the order of elements in a list or characters in a string
[1, 2, 3].reverse() returns [3, 2, 1]

 18

Groovy35

Added List Operators

• plus
– creates a union of two lists, but duplicates are not removed
[1, 2, 3] + [2, 3, 4] returns [1, 2, 3, 2, 3, 4]

• minus
– removes all elements from the first list that are in the second
[1, 2, 3, 4] - [2, 4, 6] returns [1, 3]

When the list items
are not primitives,
the equals method is
used to compare them.

Groovy36

Groovy Maps

• Instances of java.util.HashMap
• Example

players = ['baseball':'Albert Pujols',

 'golf':'Tiger Woods']

println players['golf'] // prints Tiger Woods

println players.golf // prints Tiger Woods

for (player in players) {

 println "${player.value} plays ${player.key}"

}

players.each { |player|

 println "${player.value} plays ${player.key}"

}

• Create empty maps with [:]
players = [:]

two ways to get
values by key

these are
equivalent

 19

Groovy37

Groovy Switch

• switch statement takes any kind of object
– including Class, List, Range and Pattern (see example on next page)

• case statements compare values using isCase method
– many overloaded versions of isCase are provided
– unless overloaded for specific types, isCase uses equals method
– when case is followed by a class name, isCase uses instanceof
– can overrride in your own classes

Groovy38

Groovy Switch (Cont’d)

• Example
switch (x) {

 case 'Mark':

 println 'got my name'; break

 case 3..7:

 println 'got a number in the range 3 to 7 inclusive'; break

 case ['Moe', 'Larry', 'Curly']:

 println 'got a Stooge name'; break

 case java.util.Date:

 println 'got a Date object'; break

 case ~"\\d{5}":

 println 'got a zip code'; break

 default:

 println "got unexpected value ${x}"

}

 20

Groovy39

Groovy Ranges

• Created by “..” and “...” operators
• Examples

– 3..7 creates a range from 3 to 7
– 3...7 creates a range from 3 to 6
– "A".."D" creates a range from “A” to “D”
– "A"..."D" creates a range from “A” to “C”

• Useful in loops
– see “Groovy Looping” slide coming up

Groovy40

Groovy Ranges (Cont’d)

• groovy.lang.Range interface
extends java.util.AbstractList
– an immutable list
– adds getFrom and getTo methods to get lower and upper values

• Two implementations are provided
– groovy.lang.IntRange when bounds are integers

• adds contains method to test whether a value is in the range
– groovy.lang.ObjectRange when bounds are any other type

• also adds contains method
• only useful when the objects implement java.lang.Comparable

 21

Groovy41

Groovy Looping

• for
for (i in 1..1000) { println i }

• while
i = 1

while (i <= 1000) { println i; i++ }

• each
(1..1000).each { println it }

• times
1000.times { println it }

– values go from 0 to 999

Looping through an ObjectRange
for (c in 'A'..'D') {
 println c
}

example of using it keyword

Groovy42

Groovy Looping (Cont’d)

• upto
1.upto(1000) { println it }

– values go from 1 to 1000

• step
1.step(1001, 1) { println it }

– values go from 1 to 1000; stopping one before the parameter value

 22

Groovy43

List, Map & String Methods
That Accept a Closure

• each
– iterates through collection items or string characters
– alternative to using java.util.Iterator

• results in more compact code
– example

• print each number in a List
[5, 9, 1, 6].each { |x| println x}

or
[5, 9, 1, 6].each {println it}

returns nothing

• collect
– transforms a collection or string into a new one
– example

• double each number in a List and create a new List
doubles = [5, 9, 1, 6].collect { |x| x * 2}

returns [10, 18, 2, 12]

currently defined in
src/main/org/codehaus/
groovy/runtime/
DefaultGroovyMethods.java

Groovy44

List, Map & String Methods
That Accept a Closure (Cont’d)

• find
– finds first occurrence of a collection item or string character

that meets some criteria
– example

• find the first number in a list that is greater than 5
[5, 9, 1, 6].find { |x| x > 5} returns 9

• findAll
– finds all occurrences of a collection item or string character

that meet some criteria
– example

• find all the numbers in a list that are greater than 5
[5, 9, 1, 6].findAll { |x| x > 5} returns [9, 6]

 23

Groovy45

List, Map & String Methods
That Accept a Closure (Cont’d)

• every
– determines whether every collection item or string character

meets some criteria
– example

• determine whether all the numbers in a List are less than 7
[5, 9, 1, 6].every { |x| x < 7} returns false

• any
– determines whether any collection item or string character

meets some criteria
– example

• determine whether any of the numbers in a List are less than 7
[5, 9, 1, 6].any { |x| x < 7} returns true

Groovy46

List, Map & String Methods
That Accept a Closure (Cont’d)

• inject
– passes a value into the first iteration
– result of each iteration is passed into next one
– example

• find 5 factorial (in an unusual way)
factorial = [2, 3, 4, 5].inject(1) {
 |prevResult, x| prevResult * x

}

• closure is executed four times
– 1 * 2
– 2 * 3
– 6 * 4
– 24 * 5

• returns 120

 24

Groovy47

File I/O

• Reading lines - 2 options
file = new File('myFile.txt')

file.eachLine { println it }
lineList = file.readLines()

• Reading bytes - 2 options
file = new File('myFile.txt')

file.eachByte { println it }
byteList = file.readBytes()

• Reading files in a directory
dir = new File('directory-path')

dir.eachFile { |file| . . . }

ellipses (...) in the
code examples
indicate omitted code

Groovy48

I/O With Resource Closing
Even If Exception

• Reading
file.withReader { |reader| . . . }
reader.withReader { |reader| . . . }
inputStream.withStream { |is| . . . }

• Writing
file.withWriter { |writer| . . . }
file.withPrintWriter { |pw| . . . }
file.withOutputStream { |os| . . . }
writer.withWriter { |writer| . . . }
outputStream.withStream { |os| . . . }

currently there is no
withInputStream method,
but it should be added soon

 25

Groovy49

Overloaded Left Shift Operator

• To append strings
s = 'foo'

s = s << 'bar'

• To append to a StringBuffer
sb = new StringBuffer('foo')

sb << 'bar'

• To add to lists
colors = ['red', 'green']

colors << 'blue'

• To write to end of streams
w = new File('myFile.txt').newWriter()

w << 'foo' << 'bar'

w.close()

myFile.txt will contain foobar

colors = ['red', 'blue', 'green']

s = 'foobar'

sb.toString() = 'foobar'

Groovy50

GPath - Object Navigation

• Can walk an object graph with XPath-like syntax using .
• To avoid risk of NullPointerException,

use -> instead of .
• Example

class Team { String name; Person coach; players = [] }

class Person { String name }

p = new Person(name:'Mike Martz')

t = new Team(name:'Rams', coach:p)

println "coach = ${t.coach.name}"

t = new Team(name:'Blues')

println "coach = ${t->coach->name}"

println "coach = ${t.coach.name}"

same as team.getCoach().getName()

throws a NullPointerException

null instead of NullPointerException

 26

Groovy51

Asserts

• Not a replacement for unit tests
• When an assert fails, execution stops

with a java.lang.AssertionError
– describes the failed assertion

• Provides good documentation
for things that should never happen

• Syntax
– assert boolean-expression

• Example
seasons = ['Spring', 'Summer', 'Fall', 'Winter']

assert seasons.size() == 4

Groovy52

Groovy Unit Tests

• Unit tests are typically easier to write in Groovy than Java
– more compact syntax
– can extend groovy.util.GroovyTestCase instead of

junit.framework.TestCase
– GroovyTestCase extends TestCase and adds many convenience methods

• assertArrayEquals - asserts that two arrays are equal
• assertLength - asserts that an array has a given length
• assertContains - asserts that a char or int array contains a given value
• assertToString - asserts the toString() value of an object
• assertInspect - asserts the inspect() value of an object
• assertScript - asserts that a scripts runs without an exception
• shouldFail - asserts that executing a closure throws an exception

– for examples, see Groovy’s own unit tests under src/test

• Running Groovy unit tests
– must be compiled with groovyc and run just like Java-based JUnit tests

inspect() is
typically more verbose
than toString()

 27

Groovy53

Groovy Reflection

• Getting a Class object
– from an object

• in Java, someObject.getClass()
• in Groovy, someObject.class

– from a class name
• in both Java and Groovy,

SomeClass.class or Class.forName("pkg.SomeClass")

• Example
– print a list of methods in the Groovy class GString

GString.class.methods.each { println it.name }

– print a list of method names in the Java interface List
java.util.List.class.methods.each { println it.name }

Groovy54

Catching Unimplemented Methods

• Classes can be written to
catch calls to unimplemented methods

• A bit messy now and will probably be improved later
• Example

o = new CatchCall()

println o.foo("Mark", 19)

class CatchCall {

 invokeMethod(String name, Object args) {
 try {

 return metaClass.invokeMethod(this, name, args)
 } catch (MissingMethodException e) {
 return "unknown method ${name} called with ${args}"

 }

 }

}

change this part to
customize handling of
unimplemented methods

have to do this!

called for every method invocation

parameter list

 28

Groovy55

Groovy Markup

• Utilizes the invokeMethod method
to catch calls to non-existent methods
and convert them to “nodes”
– parameters to the methods are treated as attributes of the nodes
– closures after the methods are treated as the content of the nodes

• This has many uses including
– building generic, data structure trees (NodeBuilder)
– building DOM trees (DOMBuilder)
– firing SAX events (SAXBuilder)
– creating strings of HTML or XML (MarkupBuilder)
– executing Ant tasks (AntBuilder)
– creating Swing user interfaces (SwingBuilder)

• In addition, custom builders can be created
– by extending the class groovy.util.BuilderSupport

Groovy56

Generating HTML With MarkupBuilder

• Example code
import groovy.xml.MarkupBuilder

mb = new MarkupBuilder()

mb.html() {

 head() {

 title("This is my title.")

 }

 body() {

 p("This is my paragraph.")

 }

}

println mb

• Example output
<html>

 <head>

 <title>This is my title.</title>

 </head>

 <body>

 <p>This is my paragraph.</p>

 </body>

</html>

 29

Groovy57

Generating XML With MarkupBuilder

• Example code
import groovy.xml.MarkupBuilder;

mb = new MarkupBuilder()

mb.autos() {

 auto(year:2001, color:'yellow') {

 make('Toyota')

 model('Camry')

 }

}

println mb

• Example output
<autos>

 <auto year='2001' color='yellow'>

 <make>Toyota</make>

 <model>Camry</model>

 </auto>

</autos>

Groovy58

Groovy SQL

• Makes JDBC easier
– groovy.sql.Sql class

• provides an easy way to execute query and iterate through ResultSet rows
• sql.queryEach(sqlString) { |resultSetRow| . . . }

• Example
import groovy.sql.Sql

dbURL = 'jdbc:odbc:MusicCollection'

jdbcDriver = 'sun.jdbc.odbc.JdbcOdbcDriver'

sql = Sql.newInstance(dbURL, jdbcDriver)

sql.eachRow('select * from Artists') {

 println it.Name

} table name
column name

 30

Groovy59

Groovlets

• Groovy alternative to Servlets and JSP
• Provides implicit variables

– out is what is returned by the
HttpServletResponse getWriter method

– request is the HttpServletRequest
– session is the HttpSession

Groovy60

Groovlets (Cont’d)

• Example Groovlet
out.println <<<EOS

<html>

 <head>

 <title>My Simple Groovlet</title>

 </head>

 <body>

 <h1>My Simple Groovlet</h1>

 <p>Today is ${new java.util.Date()}.</p>

 </body>

</html>

EOS

using a “here-doc”

this can be saved in a file with a name
like SimpleGroovlet.groovy

 31

Groovy61

Groovlets (Cont’d)

• GroovyServlet
– compiles Groovlets and caches them until they are changed

• automatically recompiles them if they are changed
– must be registered in web.xml

• web.xml
<?xml version="1.0"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>

 <servlet-name>Groovy</servlet-name>

 <servlet-class>groovy.servlet.GroovyServlet</servlet-class>
 </servlet>

 <servlet-mapping>

 <servlet-name>Groovy</servlet-name>

 <url-pattern>*.groovy</url-pattern>
 </servlet-mapping>
</web-app>

Groovy62

Deploying Groovlets

• Create a WAR with the following contents
– at top

• Groovlet source files (*.groovy)
– in WEB-INF

• web.xml

– in WEB-INF/lib
• groovy*.jar

• asm*.jar

• Copy WAR to server directory for web apps.
– for Tomcat this is the webapps directory under where Tomcat is installed

 32

Groovy63

Deploying a Groovlet With Ant

• build.properties
build.dir=build

src.dir=src

Directory that contains Groovlets

groovy.dir=${src.dir}/groovy

Directory that contains web.xml

web.dir=${src.dir}/web

Path to WAR that will be produced

war.file=${build.dir}/${ant.project.name}.war

Where the WAR should be deployed

webapps.dir=${env.TOMCAT_HOME}/webapps

JARs that must be in the WAR

asm.jar=${env.GROOVY_HOME}/lib/asm-1.4.1.jar

groovy.jar=${env.GROOVY_HOME}/lib/groovy-1.0-beta-4-snapshot.jar

Groovy64

Deploying a Groovlet With Ant (Cont’d)

• build.xml
<project name="GroovletExample" default="deploy">
 <property environment="env"/>

 <property file="build.properties"/>

 <target name="prepare">
 <mkdir dir="${build.dir}"/>

 </target>

 <target name="war" depends="prepare"
 description="creates WAR file">

 <war destfile="${war.file}" webxml="${web.dir}/web.xml">

 <fileset dir="${groovy.dir}"/>

 <lib file="${groovy.jar}"/>

 <lib file="${asm.jar}"/>

 </war>

 </target>

 <target name="deploy" depends="war" description="deploys WAR file">
 <delete dir="${webapps.dir}/${ant.project.name}"/>

 <delete file="${webapps.dir}/${war.file}"/>

 <copy file="${war.file}" todir="${webapps.dir}"/>

 </target>

</project>

 33

Groovy65

Displaying A Groovlet

• Once this example Groovlet is deployed,
it can be displayed in a web browser
by visiting a URL like
– http://localhost:8080/GroovletExample/SimpleGroovlet.groovy

web app. name Groovlet name;
matches the url-pattern
specified for
GroovyServlet in
web.xml

Groovy66

Groovy Issues

• Groovy isn’t perfect yet
• To view issues with Groovy

– visit http://groovy.codehaus.org and click “Issue Tracker” link

• Here are some of the reported issues
– problems with primitives

• primitive parameters to methods and closures aren’t supported yet
(128 & 133)

• arrays of primitives aren’t supported yet (119)
• static primitive fields aren’t supported yet (153)

– other problems
• chained assignment (x = y = 19) isn’t supported yet (57)
• compiler doesn’t catch calls to non-existent methods

on statically typed parameters (170)
• nested classes aren’t supported yet (69)

 34

Groovy67

Wrapup

• So there it is ... a quick run through of
some of the syntax and features of Groovy

• Questions
– Will the shortcuts provided over Java allow you to get more work done?
– Will you have more fun doing it?
– Will your code be easier or harder to understand?

Groovy68

Agreeing on Syntax

• If we could all agree on
what makes a good programming language syntax
then we wouldn’t need so many of them
– based on the number of programming languages out there,

we obviously don’t agree

• You may decide that you like Java syntax just fine
and that Groovy syntax is
just too much syntactic sugar for your tastes
– if that is your conclusion, I encourage you to investigate

BeanShell from Pat Niemeyer at http://www.beanshell.org

• On the other hand,
if you prefer the shorter syntax of Groovy
then that’s just groovy!

BeanShell sticks closer
to standard Java syntax

 35

Groovy69

Feedback

• I'd love to hear your feedback
– email me at mark@ociweb.com

• Also, share your feedback on the Groovy mailing lists
– described http://groovy.codehaus.org/mail-lists.html

