
Node.js - the core
Mark Volkmann

mark@ociweb.com
Object Computing, Inc.

April 21, 2012

Node.js

Overview ...

“Node's goal is to provide an easy way to build scalable network programs.”
http://nodejs.org/#about

A full programming environment, not just for building “servers”

“The official name of Node is "Node".
The unofficial name is "Node.js" to disambiguate it from other nodes.”

https://github.com/joyent/node/wiki/FAQ

Runs on top of Chrome V8 (see next slide)

Implemented in C++ and JavaScript

Supported on Linux, Mac OS X and Windows

Created by Ryan Dahl at Joyent

2

passed control of the project
to Isaac Schlueter on 1/30/12

a cartoon from substack

Node.js

... Overview

Event-based rather than thread-based; can use multiple processes

Assumes most time consuming operations involve I/O
invoked asynchronously; non-blocking

a callback function is invoked when they complete

3

Overview

Should You Use It?

Reasons To Use
application can benefit from asynchronous, non-blocking I/O

application is not compute-intensive

V8 engine is fast enough

prefer callback or actor models of concurrency

over thread-based approach with synchronized access to mutable state

same language on client and server

like dynamically typed languages

large number of JavaScript developers

Some issues being addressed
finding packages - there are a large number of them and finding the best ones isn’t easy enough

debugging - stack traces from asynchronously executed code are incomplete

event loop - sometimes difficult to determine why a program isn’t exiting

typically due to open connections

4

Node.js

Multiple Threads & Processes

Node uses multiple threads internally
to simulate non-blocking file I/O

You can’t create new threads
unless you use “Threads A GoGo”

https://github.com/xk/node-threads-a-gogo

“provides an asynchronous, evented and/or continuation passing style API
for moving blocking/longish CPU-bound tasks out of Node's event loop
to JavaScript threads that run in parallel in the background
and that use all the available CPU cores automatically;
all from within a single Node process”

Can use multiple, cooperating processes
see “Child Processes” core module

processes created with fork function can emit and listen for messages

see “Clusters” core module

“easily create a network of processes that all share server ports”

5

Node.js

Chrome V8

From Google

Used by Chrome browser and Node.js

Implemented in C++

Currently supports ECMAScript 5

Node adopts the JavaScript syntax supported by V8
so will support ES6 when V8 supports it

6

Node.js

Where To Look For Functionality

1. JavaScript
core classes: Arguments, Array, Boolean, Date, Error,
Function, Global, JSON, Math, Number, Object, RegExp, String

2. Core Modules
included with Node

http://nodejs.org/docs/latest/api/

view source at https://github.com/joyent/node

JavaScript is in lib directory

C++ code is in src directory

3. Userland Modules (third party)
typically installed using NPM tool

http://search.npmjs.org/

8802 NPM packages on 4/12/12

4. Write yourself

7

Packages have JavaScript APIs,
but can be partially implemented in C++.

Node.js

Event Loop

When a Node program starts,
it automatically starts an event loop

node name.js

The currently running function, or the main script,
can add function calls to the event queue

one way is by passing a function to process.nextTick

When the currently running function completes
next function in event queue is removed from queue and run

Most asynchronous functions, such as those that perform I/O
take a callback function as an argument

add a call to that function to the event queue when their work completes

Program ends when event queue is empty
and there are no open network connections

8

U.K. roller coaster
(1930 to 2007)

Node.js

Synchronous vs. Asynchronous

Asynchronous functions
preferred over synchronous in most cases,
especially when time to complete is long or unpredictable

take a callback function

invoke it, passing an error description
and possibly additional arguments

Synchronous functions
can make application unresponsive if long running

do not take a callback function

if an error occurs, throw an error description

either a string or an Error object

throwing an Error is preferred because
when strings are thrown, no stacktrace is available

9

Node.js

Callbacks

Functions passed to asynchronous functions
often anonymous

Invoked any number of times
typically just once when operation completes

Parameter that accepts callback
by convention, last parameter

by convention, named cb or callback

Callback parameters
typically an object describing an error, if any, and a result

by convention, error is first argument and is named err

Some libraries require following these conventions
ex. Async.js

See example on next slide

10

Node.js

Callback Example

11

var fs = require('fs');

function readObject(filePath, cb) {
 fs.readFile(filePath, function (err, buf) {
 var obj = null;
 if (!err) {
 try {
 obj = JSON.parse(buf); // can throw
 } catch (e) {
 err = e;
 }
 }
 cb(err, obj);
 });
}

readObject('demo.json', function (err, obj) {
 if (err) {
 console.error(err);
 } else {
 console.log(obj);
 }
});

fs = require 'fs'

readObject = (filePath, cb) ->
 fs.readFile filePath, (err, buf) ->
 if !err
 try
 obj = JSON.parse(buf) # can throw
 catch e
 err = e
 cb err, obj

readObject 'demo.json', (err, obj) ->
 if err
 console.error err
 else
 console.log obj

JavaScript

CoffeeScript

{
 "name": "Mark Volkmann",
 "address": {
 "street": "644 Glen Summit",
 "city": "St. Charles",
 "state": "Missouri",
 "zip": 63304
 },
 "hobby": "running"
}

demo.json

Node.js

Async Userland Module

Provides many functions that simplify writing asynchronous code

Arguably the most popular Node flow control library

Functions three categories
collections

foreach[Series|Limit], map[Series], filter[Series], reject[Series],
reduce[Right], detect[Series], sortBy, some, every, concat[Series]

control flow

series, parallel, whilst, until, waterfall, queue, auto, iterator, apply, nextTick

utilities

memoize, unmemoize, log, dir, noConflict

Written by Caolan McMahon

https://github.com/caolan/async

12

Node.js

Async Example

13

var async = require('async');
var fs = require('fs');
var rimraf = require('rimraf'); // Unix "rm -rf" for Node

var dirPath = 'foo';
var fileName = 'bar.txt';
var filePath = dirPath + '/' + fileName;
var content = 'some content';
async.waterfall(
 [
 rimraf.bind(null, dirPath),
 fs.mkdir.bind(null, dirPath),
 fs.writeFile.bind(null, filePath, content),
 fs.stat.bind(null, filePath)
],
 function (err, stats) {
 if (err) {
 throw err;
 }
 console.log('size is ' + stats.size);
 });

Node.js

Node Globals
(other than standard JavaScript globals)

Variables defined outside functions
are global in browsers

are local to current module in Node

Node global variables
console - used to write to stdout and stderr

global - object that holds most global properties and functions

can use to share properties across modules; values can be functions

process - has methods that get info about and interact with current process; extends EventEmitter

require - has property cache (see next slide)

Buffer - constructor function for creating objects that read and write data, especially binary data

Node global functions
require, setTimeout, clearTimeout, setInterval, clearInterval

14

more on this later

require is a function
that has properties

Node.js

Node Local Variables

Node variables that are local to current module
__dirname

full path to directory that contains the module source file

__filename

full path to source file name that defines the module

module

object that holds information about the current module

shared by all instances of current module

main property of interest is exports

exports

object used to export properties from a module; values can be functions

same as module.exports

require.cache

a property on the require function

holds required modules so each is only loaded once

delete a property to allow a module to be reloaded
by a subsequent call to require

property is full path to module, ex. delete require.cache[__dirname + '/mymodule.js'];

15

The require function has other properties,
but they are rarely used directly.
They include: extensions, main,
registerExtension and resolve.

Node.js

Modules

Defined by a single JavaScript file
may “require” others that are their own modules

Top-level variables and functions defined in them are local to the module
not global in the entire runtime like in a browser environment

not visible to other modules unless exported

Each module has it’s own local variable named “module”
that refers to an object with these properties

exports - initially set to {}; see next slide

parent - module object of module that required this one

filename - full path to file that defines this module

loaded - false until first require of the module completes; defaults to false

paths - array of filepaths that would be searched to find this module

exited - no longer used

children - no longer used

16

Node.js

Defining Modules

A module can expose functions to other modules by exporting them
not visible outside module if not exported

To export many functions
exports.name = some-function;

repeat to export additional things

To export a single function
module.exports = some-function;

replaces the default exports object

exports only one thing from the module

not used in conjunction with previous kind of exports

Should also create package.json and README.md

17

used by npm used by GitHub

can also export non-function values,
including objects and arrays,
but that isn’t as common

A Node package is a collection of
one or more JavaScript modules,
optional C++ source files,
optional shell scripts and
a package.json file that describes
the contents of the package
and identifies the main module
(or uses index.js by default).

can be a constructor function;
can have properties whose values are other functions

Node.js

Using Modules

var name = require('module-name');

1. searches core modules

2. searches directories listed in NODE_PATH environment variable

• delimited with : in Linux and Mac or ; in Windows

3. searches upward in path for “node_modules” subdirectories

var name = require('module-path');

1. only reads from specified path; typically start with ./ or ../

Object returned is typically
an object with many properties that are the exported functions

a constructor function

a single, non-constructor function

Caches result
subsequent requires for same module return cached object
without re-reading the file that defines the module

unless require.cache property matching full path to module is deleted

18

searches for specified name,
then tries these file extensions:
.js, .json, .node

for more detail, see http://nodejs.org/
docs/latest/api/modules.html

Node.js

console Methods
similar to methods supported in browsers

console.log(args) - writes to stdout with a newline

first arg can be a string containing formatting directives

if not, util.inspect is called on each argument (returns string representation of object)

formatting directives: %s - String, %d - Number, %j - JSON, %% - single percent sign

console.info - same as console.log

console.warn - same as console.log, but writes to stderr

console.error - same as console.warn

console.dir(obj) - writes result of util.inspect(obj) to stdout

console.time(label) - marks start time

console.timeEnd(label) - marks end time and outputs label and duration

console.trace - writes stack trace to stderr

console.assert(boolean, msg)

same as assert.ok(); throws AssertionError with msg if false

19

multiple arguments
are output with a
space between each

Node.js

Process Properties

process.argv - array containing 'node', main script absolute file path, and command-line arguments

process.env - object containing environment variables

process.pid - process id

process.stdin - non-blocking readable stream; paused by default

emits 'data' event when return key is pressed and 'end' event when ctrl-d is pressed

process.stdout and process.stderr - blocking, writable streams

important so output from asynchronous functions isn’t interspersed

process.title - get/set name displayed by ps command; defaults to “node”

process.version - Node version

and more

20

see upcoming example

doesn’t work on Mac OS X

Node.js

Process Methods

process.chdir(directory) - changes current working directory

process.cwd() - returns current working directory

process.exit(code) - exits process with given status code

process.memoryUsage()

returns object with heapTotal and heapUsed properties

process.nextTick(function)

places given function at end of event loop queue
so it runs in next iteration of event loop

one way to break up a long running function
that avoids blocking event loop

process.uptime()

returns number of seconds (integer, not float) process has been running

more

21

see upcoming example

Node.js

Process Events

exit - process is about to exit; event loop is no longer running

uncaughtException - error has bubbled to top

if a listener is registered, uncaught exceptions will not cause a stack trace to print and program to exit

POSIX signals - ex. SIGINT emitted when ctrl-c is pressed

22

process.on(event-name, function () {
 ...
});

for more detail on listening for events,
see slides on EventEmittter later

Node.js

Buffers

For reading and writing data, including binary data
some read and write functions in the “file system” module work with Buffer objects

Must specify encoding when converting between strings and Buffer objects
'ascii', 'base64', 'binary', 'hex', 'ucs2', 'utf8'

To create a Buffer
new Buffer(size-in-bytes)

new Buffer(array)

new Buffer(string, encoding='utf8')

Buffer properties
length in bytes

23

“If you pass a Buffer to a function,
it's no longer your buffer!
Reading from it or writing to it
at that point is entering the
territory of undefined behavior.”
Issac Schlueter on
Node.js mailing list, 3/15/12

Node.js

Buffer Writing Methods ...

buffer[index] = value;

sets a given byte

buffer.write(string,
 offset=0, length=buffer.length, encoding='utf8')

length is the number of bytes to write

if not enough room, will write as many bytes as will fit

returns number of bytes written

buffer.writetype(value, offset, noAssert=false)

where type is Int8, Int16BE, Int16LE, Int32BE, Int32LE,
UInt8, UInt16BE, UInt16LE, UInt32BE, UInt32LE,
FloatBE, FloatLE, DoubleBE, DoubleLE

when noAssert is true, it doesn’t verify that there is enough space
from the offset to the end of the buffer to write the type

no return value since the number of bytes written is known from the method name

24

LE = Little Endian
BE = Big Endian

Node.js

... Buffer Writing Methods

buffer.copy(targetBuffer, targetStart=0, sourceStart=0, sourceEnd=buffer.length)

copies data from one buffer (the method receiver) to another

buffer.fill(value, offset=0, end=buffer.length)

value is used for each byte

value should be an integer (0 to 255) or a string (only first byte is used)

if only value is specified, the entire buffer is filled

25

Node.js

Buffer Reading Methods

buffer[index]

returns a given byte

buffer.toString(encoding, start=0, end=buffer.length)

buffer.readtype(offset, noAssert=false)

where type is Int8, Int16BE, Int16LE, Int32BE, Int32LE,
UInt8, UInt16BE, UInt16LE, UInt32BE, UInt32LE,
FloatBE, FloatLE, DoubleBE, DoubleLE

when noAssert is true, it doesn’t verify that there are enough bytes
from the offset to the end of the buffer to read the type

returns a Number

26

LE = Little Endian
BE = Big Endian

Node.js

Other Buffer Methods/Functions

Other Buffer methods
buffer.slice(start, end=buffer.length)

returns a new buffer that shares memory with the receiver

start is the offset and end is the length of the new buffer

Buffer functions
Buffer.byteLength(string, encoding='utf8')

returns byte length of a given string which isn’t always the same as string.length

Buffer.isBuffer(obj)

determines if an object is a Buffer

27

Node.js

Buffer Example

28

var buf = new Buffer(100);

buf.writeUInt16BE(12345, 0);

buf.writeFloatLE(Math.PI, 16);

var number = buf.readUInt16BE(0);
console.log('number =', number);

var pi = buf.readFloatLE(16);
console.log('pi =', pi);

Node Tools

REPL

Provides a Read-Eval-Print-Loop
launched from a terminal window by entering "node"

result of last expression is held in variable _

Other than entering standard JavaScript code,
the following REPL commands are supported

.help - lists these commands

.break - discards a partially entered multi-line expression (ctrl-c does same)

.exit - exits REPL (ctrl-d does same)

.save {file-path} - saves every line entered in REPL to specified file

.load {file-path} - loads a JavaScript file, even if it has already been loaded; picks up changes

29

Node Tools

Please Use A Lint Tool!

Find coding errors and style violations, including incorrect indentation

JSLint
from Douglas Crockford

very strict and opinionated - “Warning! JSLint will hurt your feelings.”

http://jslint.com/

nodelint is an npm module that allows JSLint to be run from command line

https://github.com/tav/nodelint

JSHint
a fork of JSLint from Anton Kovalyov, Wolfgang Kluge and Josh Perez

more configurable, so less opinionated

http://www.jshint.com/

node-jshint is an npm module that allows JSHint to be run from command line

https://github.com/jshint/node-jshint

npm install -g jshint

30

for more detail, see http://nodejs.org/
docs/latest/api/modules.html

Node Tools

Lint Tool Editor Integration

Highlights errors/violations as you type!

Emacs
https://github.com/daleharvey/jshint-mode

Vim
jslint.vim - https://github.com/hallettj/jslint.vim

jshint.vim - https://github.com/manalang/jshint.vim

Sublime
subline-jslint - https://github.com/fbzhong/sublime-jslint

sublime-jshint - https://github.com/uipoet/sublime-jshint

Sublime Linter - http://rondevera.github.com/jslintmate/

31

Core Modules

Core Modules

Overview

Core modules are “modules and bindings that are compiled into Node”

“In general, Node is based on the philosophy that
it should not come with batteries included.”

“One goal of Node's minimal core library is to
encourage people to implement things in creative ways,
without forcing their ideas onto everyone.”

“With a tiny core and a vibrant user space,
we can all flourish and experiment
without the onerous burden of having to always agree”

See links in API doc at http://nodejs.org/docs/latest/api/

33

Core Modules

Table Of Contents

Utilities - 35

Assertion Testing - 38

OS - 41

Readline - 44

TTY - 48

Events - 50

Path - 54

File System - 56

Streams - 68

Zlib - 74

String Decoder - 76

Net - 77

Datagram (UDP) - 86

DNS - 91

HTTP - 93

URL - 97

Query Strings - 100

Crypto - 101

TLS/SSL - 102

HTTPS - 107

VM - 109

Child Processes - 113

Cluster - 117

34

Core Modules

Utilities ...

util.debug(string) - writes to stderr preceded by “DEBUG: ”

util.log(string) - writes to stdout preceded by timestamp and “ - ”

util.format(fmt-string, args)

returns a formatted string

formatting directives: %s - String, %d - Number, %j - JSON, %% - single percent sign

excess arguments are converted to strings using util.inspect(arg)

util.inspect(object, hidden=false, depth=2)

returns string representation of an object

includes non-enumerable properties only if hidden is true

traverses objects to default or specified depth; pass null for infinite

35

var util = require('util');

Core Modules

... Utilities ...

util.isArray(value) - determines if an object is an Array

in ES5, can use Array.isArray(value)

util.isDate(value) - determines if an object is a Date

util.isError(value) - determines if an object is an Error

util.isRegExp(value) - determines if an object is a RegExp

Use typeof operator for other tests
typeof(value) === 'boolean'|'number'|'string'|'object'|'function'|'undefined'

36

Why not just use the instanceof operator in place of these?

JavaScript’s instanceof operator doesn't work across contexts,
including those created with Node’s “vm” module
and created in different browser windows or frames.

The util.is* functions provide a more reliable way to
determine if an object is of one of these fundamental types.

Here’s the implementation of util.isDate:

function isDate(d) {
 return typeof d === 'object' &&
 objectToString(d) === '[object Date]';
}

Core Modules

... Utilities

util.inherits(ctor, superCtor)(obj)

inherits prototype methods
from one constructor into another

prototype of ctor is set to a new object
created from superCtor

adds super_ property to ctor

37

var util = require('util');

function MySuper() {}

MySuper.prototype.foo = function () {
 console.log('MySuper foo entered');
};

function MySub() {
 MySuper.call(this);
}

util.inherits(MySub, MySuper);

MySub.prototype.foo = function () {
 MySub.super_.prototype.foo();
 console.log('MySub foo entered');
};

var sub = new MySub();
sub.foo();

Output:
MySuper foo entered
MySub foo entered

can pass arguments to
superclass ctor here

calls superclass method

Core Modules

Assertion Testing ...

Basic assertions that throw an Error if a condition isn’t met

Used by some unit test frameworks

Actual and expected values are specified
in opposite order of many other testing APIs

Call functions on this assert object
that are listed on the next slide

ex. assert.equal(score, 100, 'perfect score');

38

var assert = require('assert');

Core Modules

... Assertion Testing

Functions
ok(value, [message]) or assert(value, [message])

verifies that value is truthy; value can be a boolean condition

equal(actual, expected, [message]) - uses ==, so performs type conversions

notEqual(actual, expected, [message]) - uses !=, so performs type conversions

deepEqual(actual, expected, [message]) - also compares nested properties and array elements

notDeepEqual(actual, expected, [message]) - ditto

strictEqual(actual, expected, [message]) - uses ===, so no type conversions

notStrictEqual(actual, expected, [message]) - uses !==, so no type conversions

throws(fn, [error], [message]) - succeeds if fn throws any error or a specified one

doesNotThrow(fn, [error], [message]) - succeeds if fn does not throw any error or a specified one

ifError(value) - throws if value is truthy; useful for testing first parameter in callbacks

fail(actual, expected, message, operator)

throws AssertionError with message , ignoring other arguments

if message is null, the error message actual + ' ' + operator + ' ' + expected and message isn’t used

39

see Node.js
issue #2993

Core Modules

Assertion Examples

40

var assert = require('assert');
var fs = require('fs');

assert(1 < 2, 'math works');

var actual = [1, [2, 3], 4];
var expected = [1, [2, 3], 4];
assert.deepEqual(actual, expected);

assert.throws(
 fs.readFileSync.bind(null, '/does/not/exist'),
 Error);

assert.doesNotThrow(
 function () {
 fs.readFileSync('demo.js');
 },
 Error);

console.log('calling fs.readFile');
fs.readFile('/does/not/exist', function (err, data) {
 assert.ifError(err);
 console.log('data =', data);
});

assert.fail(null, null, 'did not expect to be here');

Core Modules

OS

Retrieves information about the operating environment
processor architecture (ex. x64 or ia32 which are specific Intel processor architectures)

host name

load average over last 1, 5 and 15 minutes

OS platform (ex. ‘darwin’)

OS type (ex. ‘Darwin’)

OS release number

uptime in seconds

free and total memory in bytes

information about each network interface

information about each CPU

Get number of processors with
os.cpus().length

41

var os = require('os');

Core Modules

OS Example

42

var os = require('os');

console.log('arch =', os.arch());
console.log('hostname =', os.hostname());
console.log('loadavg =', os.loadavg()); // 1, 5 and 15 minute load averages
console.log('platform =', os.platform());
console.log('release =', os.release());
console.log('type =', os.type());
console.log('uptime =', os.uptime(), 'seconds');

console.log('\nfreemem =', os.freemem(), 'bytes');
console.log('totalmem =', os.totalmem(), 'bytes');
var pctFree = os.freemem() / os.totalmem() * 100;
console.log('% free =', pctFree.toFixed(2) + '%');

// Returns object where keys are interface names and
// values are arrays of objects, 1 per address for the interface,
// that have address, family and internal properties.
console.log('\nnetworkInterfaces =', os.networkInterfaces());

// Returns array of objects, 1 per CPU,
// that have model, speed (in MHz) and times
// (# of CPU ticks spent in user, nice, sys, idle and irq) properties.
console.log('\ncpus =', os.cpus());

percentages with values
between 0 and 1

user - milliseconds executed at user level without nice priority

nice - milliseconds executed at user level with nice priority

system - milliseconds executed at system level

idle - milliseconds doing nothing

irq - milliseconds servicing interrupts (includes waiting on I/O?)

Core Modules

arch = ia32
hostname = Mark-Volkmanns-MacBook-Pro-17.local
loadavg = [0.8515625, 0.67724609375, 0.64111328125]
platform = darwin
release = 11.2.0
type = Darwin
uptime = 15954 seconds

freemem = 3607273472 bytes
totalmem = 8589934592 bytes

networkInterfaces = { lo0:
 [{ address: 'fe80::1', family: 'IPv6', internal: true },
 { address: '127.0.0.1', family: 'IPv4', internal: true },
 { address: '::1', family: 'IPv6', internal: true }],
 en0:
 [{ address: 'fe80::5ab0:35ff:fef3:d095', family: 'IPv6', internal: false },
 { address: '192.168.0.5', family: 'IPv4', internal: false }],
 en1:
 [{ address: 'fe80::5ab0:35ff:fe6a:23e4', family: 'IPv6', internal: false },
 { address: '192.168.0.6', family: 'IPv4', internal: false }] }

OS Example Output

43

cpus = [{ model: 'MacBookPro6,1',
 speed: 2660,
 times: { user: 730150, nice: 0, sys: 569300, idle: 14654330, irq: 0 } },
 { model: 'MacBookPro6,1',
 speed: 2660,
 times: { user: 279490, nice: 0, sys: 126060, idle: 15548110, irq: 0 } },
 { model: 'MacBookPro6,1',
 speed: 2660,
 times: { user: 985960, nice: 0, sys: 616860, idle: 14350840, irq: 0 } },
 { model: 'MacBookPro6,1',
 speed: 2660,
 times: { user: 254950, nice: 0, sys: 115040, idle: 15583670, irq: 0 } }]

lo0 is the “virtual loopback interface”.
Packets sent to this are routed internally
to the network loopback.
This bypasses local network interface hardware,
reducing load on network resources.

Core Modules

Readline ...

Reads streams one line at a time

Supports many control keys when reading from stdin
see _ttwrite method in readline.js

Functions
createInterface(input, output, completer)

input and output are streams

typically process.stdin and process.stdout (should probably be the defaults)

can be a file streams

completer is a function that provides tab completion; can omit; see example ahead

setPrompt(prompt, [length])

sets prompt displayed when prompt() is called

if length is specified, the prompt will be right-padded with spaces to meet it

prompt()

outputs prompt specified in setPrompt()

user can enter a line without a prompt

44

Key Action
ctrl-c emits SIGINT

ctrl-z emits SIGTSTP

ctrl-b back one char

ctrl-f forward one char

ctrl-left go to left word boundary

ctrl-right got to right word boundar

ctrl-a go to start

ctrl-e go to end

ctrl-h delete char to left of cursor

ctrl-d delete char under cursor

ctrl-u delete entire line

ctrl-k delete to end

ctrl-w delete back to word boundary

ctrl-backspace same as ctrl-w

ctrl-delete delete forward to word boundary

ctrl-p previous in history

ctrl-n next in history

var rl = require('readline');

Core Modules

... Readline

More Functions
question(text, callback)

outputs text instead of the specified prompt

passes line entered by user to callback

does not emit 'line' event, but if additional lines are entered,
'line' events are generated for those

write(text) - writes string to input as if user typed it

pause() - used internally for tab completion

resume() - used internally for tab completion

close() - marks interface as closed and emits 'close' event, but doesn’t close input stream

Events
'line' - when user presses enter key or there is a newline in the stream

'close' - when close() is called or ctrl-c or ctrl-d are pressed

45

var rl = require('readline');

var intf = rl.createInterface(
 process.stdin, process.stdout);

intf.on('line', function (line) {
 // Only invoked if more than one line is entered.
 // The question method doesn't emit this event.
 console.log('line event: got ' + line);
});

intf.question('What is your name? ',
 function (name) {
 console.log('Hello, ' + name + '!');
 });

Core Modules

Readline Guess Example

46

var rl = require('readline');

// Generate a random number between 1 and 10.
var answer = Math.floor(Math.random() * 10) + 1;
console.log('A number between 1 and 10 has been selected.');

var intf = rl.createInterface(process.stdin, process.stdout);
function prompt(msg) {
 intf.setPrompt(msg);
 intf.prompt();
}

intf.on('line', function (line) {
 var number = parseInt(line, 10);
 if (isNaN(number)) {
 prompt('Enter a number: ');
 } else if (number < answer) {
 prompt('Too low: ');
 } else if (number > answer) {
 prompt('Too high: ');
 } else {
 console.log('CORRECT!');

 // Allow the program to terminate.
 intf.close();
 process.stdin.destroy();
 }
});

prompt('Guess the number: ');

Core Modules

Readline Completion Example

47

var rl = require('readline');
var fruits = ('apple banana blackberry blueberry cherry grape grapefruit ' +
 'lemon lime orange peach pear plum strawberry').split(' ');

function completer(partial) {
 var options = fruits.filter(function (word) {
 return word.indexOf(partial) === 0;
 });
 return [options, partial];
}

console.log('Enter names of fruits.');
console.log('Press tab for completion.');
console.log('To exit, enter "exit" or press ctrl-c or ctrl-d.');
var intf = rl.createInterface(process.stdin, process.stdout, completer);
intf.setPrompt('fruit: ');
intf.prompt();
intf.on('line', function (line) {
 if (line === 'exit') {
 intf.close();
 process.stdin.destroy(); // allows program to terminate
 } else {
 console.log('got ' + line);
 intf.prompt();
 }
});

// Asynchronous version
function completer(partial, cb) {
 var options = fruits.filter(function (word) {
 return word.indexOf(partial) === 0;
 });
 cb(null, [options, partial]);
}

gets fruits that start with entered text

Core Modules

TTY

Intercepts terminal keystrokes
including whether shift, ctrl and meta keys were down

Important for intercepting certain keystrokes
before the operating system acts on them

for example, ctrl-c normally sends an interrupt signal (SIGINT)
that causes a Node program to stop

48

var tty = require('tty');

Core Modules

TTY Example

49

var tty = require('tty');

process.stdin.resume(); // must do before entering raw mode
tty.setRawMode(true); // can't intercept key presses without this

// char string is only set for normal characters.
// key object is set for all key presses.
// Properties of key include name, ctrl, meta and shift.
process.stdin.on('keypress', function (char, key) {
 console.log('char =', char);
 if (key) {
 console.log('key =', key);
 var name = '';
 if (key.shift) key.name = key.name.toUpperCase();
 if (key.meta) name += 'meta ';
 if (key.ctrl) name += 'ctrl ';
 name += key.name;
 console.log('You pressed ' + name);
 if (key.ctrl && key.name == 'c') {
 console.log('exiting');
 process.exit()
 }
 }
});

On Mac OS X, neither the option
nor the command key cause
the meta property to be set!

Core Modules

Events

Many Node classes inherit from EventEmitter

Custom classes can also

Objects that are event emitters
always emit 'newListener' when listeners are added

often emit 'error' when an error occurs in one of their methods

Event listeners
functions that are invoked when events are emitted

passed any data emitted with the event

not passed the event name unless EventEmitter subclasses
are specifically written to do so

50

Core Modules

EventEmitter Methods ...

setMaxListeners(n)

sets the maximum number of listeners that can be registered for a given event

default is 10; set to zero for unlimited

useful for finding bugs where an excessive number listeners are being registered

outputs warning using console.error and calls console.trace, but does not throw

on(event, listener) or addListener(event, listener)
registers a listener function for a given event

once(event, listener)

registers a listener function for a given event and removes it after its first invocation

emit(event, args)

invokes listener functions for the event in the order they registered; passes all args to them

synchronous! - listener functions are run immediately, not added to event loop queue

workaround

listener functions can add a function to event loop queue by passing it to process.nextTick

51

var EventEmitter = require('events').EventEmitter;

only property exported

light emitting diodes

Core Modules

... EventEmitter Methods

removeListener(event, listener)

unregisters a listener function for a given event

removeAllListeners([event])

unregisters all listener functions for a given event or all events

listeners(event)

returns a live array of all listener functions for a given event

can delete function elements to unregister

can push function elements to register

52

Core Modules

Event Example

53

var EventEmitter = require('events').EventEmitter;
var util = require('util');

function Thermostat() {}
util.inherits(Thermostat, EventEmitter);

Thermostat.prototype.set = function (temperature) {
 this.temperature = temperature;
 if (temperature < 32) {
 this.emit('cold', temperature);
 } else if (temperature > 100) {
 this.emit('hot', temperature);
 }
};

var t = new Thermostat();
t.on('cold', function (temp) {
 console.log(temp + ' is too cold!');
});
t.on('hot', function (temp) {
 console.log(temp + ' is too hot!');
});

t.set(50);
t.set(0); // outputs “0 is too cold!”
t.set(110); // outputs “110 is too hot!”

Core Modules

Path

Methods
normalize(p) - returns a new path after resolving .. and .,
and replacing consecutive slashes with one, in path p

join(path-parts) - returns a path created by joining any number of path parts and normalizing

resolve([from...], to) - resolves relative path to to an absolute path
by prefixing with the from values from right to left,
using the first combination found to exist or the current directory if none exist

relative(from, to) - returns a relative path that can be used to cd from from to to

dirname(p) - returns the directory portion of path p

basename(p, [ext]) - returns the filename portion of path p, removing the extension ext if supplied

extname(p) - returns the extension of path p, including a leading dot

exists(p, callback) - passes a boolean to callback indicating whether the path p exists

existsSync(p) - returns a boolean indicating whether the path p exists

54

p parameters are string file paths

moved to the “File
System” module
in Node version 7

var path = require('path');

also normalizes

why right to left?

Core Modules

Path Examples

55

var path = require('path');

console.log(path.normalize('../fs/../console///demo.js'));
// ../console/demo.js

var dirs = ['../url', '../vm', '../zlib'];
var args = dirs.concat('demo.js');
console.log(path.resolve.apply(null, args));
// /Users/Mark/Documents/OCI/SVN/training/Node.js/labs/zlib/demo.js

var absPath = path.resolve('../foo.txt');
// Recall that __dirname holds the absolute path to the current directory.
// var absPath = __dirname + /foo.txt'; // same as above

console.log(path.dirname(absPath)); // parent of current directory
console.log(path.basename(absPath, '.txt')); // foo
console.log(path.extname(absPath)); // .txt

path.exists(absPath, function (existsP) {
 console.log(absPath + ' exists? ' + existsP); // false
});

Core Modules

File System

Wraps access to POSIX file I/O functions

Provides asynchronous (preferred) and synchronous versions of most functions
asynchronous functions take a callback function as their last argument

callback functions take an error description as their first argument

synchronous functions can throw errors

Contains many more functions than any other core module
buckle up, six slides worth coming next!

for parameter details, see http://nodejs.org/docs/latest/api/fs.html

56

var fs = require('fs');

Core Modules

File System Functions ...

Open/Close
open/openSync - takes a path and returns a file descriptor

close/closeSync - takes a file descriptor

Reading
read/readSync - takes a file descriptor and a Buffer; reads specified range of bytes from file into Buffer

readFile/readFileSync - takes a file path; reads entire file; returns data in a Buffer

Writing
write/writeSync - takes a file descriptor and a Buffer;
writes specified range of bytes from Buffer into file starting at a given position

writeFile/writeFileSync - takes a file path and a string or Buffer;
writes bytes in string or Buffer to file, replacing existing content

57

Use of async functions
instead of sync functions is
strongly encouraged to avoid
blocking the event loop with
long-running I/O operations.

modes are used by these functions
and their “Sync” counterparts:
chmod, fchmod, lchmod,
mkdir and open

Core Modules

... File System Functions ...

Streams
createReadStream - returns an fs.ReadStream object

createWriteStream - returns an fs.WriteStream object

see detail on stream objects later

Directories
mkdir/mkdirSync - takes file path and optional access permissions mode (ex. '755') and creates a directory

readdir/readdirSync - takes file path and gets array of directory contents

rmdir/rmdirSync - takes directory path and deletes directory only if empty

Links
link/linkSync - creates a file that is a link (a.k.a. hard link) to another

symlink/symlinkSync - creates a file that is a symbolic link (a.k.a. soft link) to another

readLink/readLinkSync - gets info. about the file referred to by a link

unlink/unlinkSync - deletes a link or file; note there is no rm function

58

For more on hard links, see
http://en.wikipedia.org/wiki/Hard_link

For more on symbolic links, see
http://en.wikipedia.org/wiki/Symbolic_link

Core Modules

... File System Functions ...

Statistics
stat/statSync - takes a file path; returns an fs.Stats object
that provides details about the file

fstat/fstatSync - same as stat versions, but
takes a file descriptor object instead of a file path

lstat/lstatSync - same as stat versions, but
if file path is to a link, describes the link instead of the target file

all return an fs.Stats object

methods: isFile, isDirectory, isBlockDevice, isCharacterDevice, isSymbolicLink, isFIFO, isSocket

properties: dev, ino, mode, nlink, uid, gid, rdev, size, blksize, blocks, atime, mtime, ctime

atime, mtime and ctime are Date objects

Timestamps
utimes/utimesSync - takes a file path, atime and mtime; changes atime and mtime values for the file

futimes/futimesSync - same as utimes versions, but takes a file descriptor object instead of a file path

59

atime is time of last access
mtime is time of last content modification
ctime is time of last content, owner or permission change

Core Modules

... File System Functions ...

Change owner
chown/chownSync - takes a file path, user id and group id

fchown/fchownSync - same as chown versions, but
takes a file descriptor instead of a file path

lchown/lchownSync - same as chown versions, but
if file path is to a link, changes the link instead of the target file

Change mode (access permissions)
chmod/chmodSync - takes a file path and a mode (an octal number or a string)

octal literals are not allowed in ES5 strict mode

fchmod/fchmodSync - same as chmod versions, but takes a file descriptor instead of a file path

lchmod/lchmodSync - same as chmod versions, but
if file path is to a link, changes the link instead of the target file

60

ex. 0755 or '755'

Core Modules

... File System Functions ...

Watching
watchFile - takes a file path, optional options and a callback

file path cannot be to a directory

calls callback every time the file is accessed (not under Mac OS X!) or modified

default options are typically good; see doc for detail

callback is passed current and previous fs.Stats objects

to detect file modification, compare current mtime value to previous one

unwatchFile - takes a file path; stops watching for file access

watch - takes a file path, optional options and a callback

file path can be to a directory (typical case)

does not detect changes in nested directories

default options are typically good; see doc for detail

callback is invoked when the file or directory being watched has a change

passed an event string (always 'change') and
the associated file path (useful when watching a directory and a file in it changes)

returns an fs.FSWatch object that emits 'change' and 'error' events and has a close method

61

Currently the file path isn’t
consistently passed to the callback.
It never is under Mac OS X because
that OS doesn’t provide the information.

When watch indicates that the
content of a directory has changed,
fs.readdir can be used to
determine which files have changed.
See the watch example coming up.

From Ben Noordhuis ... “fs.watch on OS X and
the BSDs is backed by the kqueue event mechanism.
It has a couple of known shortcomings,
lack of *time updates being one of them.

Linux and Windows use the inotify and
ReadDirectoryChangesW interfaces respectively,
which are more robust.

Use fs.watchFile if you want consistent behavior
across Unices. It's not nearly as efficient as fs.watch
though, and it isn’t supported on Windows.”

Core Modules

... File System Functions

Other
fsync/fsyncSync - synchronizes in-memory data with data on disk

realpath/realpathSync - resolves relative file paths to absolute paths

rename/renameSync - renames and/or moves a file

takes “from path” and “to path”; “to path” must include file name, not just directory

truncate/truncateSync - truncates or extends a file to a given byte length

62

Core Modules

Reading Files - Three Ways

63

var async = require('async');
var fs = require('fs');
var filePath = 'foo.txt';

fs.readFile(filePath, function (err, buf) {
 if (err) throw err;
 console.log(buf.toString());
});

var rs = fs.createReadStream(filePath);
rs.on('data', function (buf) {
 console.log(buf.toString());
});

var maxSize = 100;
var buf = new Buffer(maxSize);
var openFile = fs.open.bind(null, filePath, 'r');
var readFile = function (fd, cb) {
 fs.read(fd, buf, 0, buf.length, 0, function (err, bytesRead) {
 console.log(buf.toString());
 cb(err, fd);
 });
};
async.waterfall([openFile, readFile, fs.close], function (err) {
 if (err) throw err;
});

This approach has the following advantages:
• can read from a specified chunk of the file
• can read into a specified chunk of the Buffer
Disadvantages include:
• all the things above MUST be specified
• the code is longer and more complicated

see more on async module
in “Userland Modules” section

can be called multiple times
for large files

can also listen for 'error' events

Core Modules

Writing Files - Three Ways

64

var async = require('async');
var fs = require('fs');

var filePath = 'foo.txt';
var data = 'red\ngreen\nblue\n';

// If file already exists, content is replaced.
fs.writeFile(filePath, data, function (err) {
 if (err) throw err;
});

var ws = fs.createWriteStream(filePath);
ws.write(data);
ws.end();

var buf = new Buffer(data);
var open = fs.open.bind(null, filePath, 'w');
var write = function (fd, cb) {
 fs.write(fd, buf, 0, buf.length, 0, function (err) {
 cb(err, fd);
 });
};
async.waterfall([open, write, fs.close], function (err) {
 if (err) throw err;
});

This approach has the following advantages:
• can write into a specified chunk of the file
• can write from a specified chunk of the Buffer
Disadvantages include:
• all the things above MUST be specified
• the code is longer and more complicated

can listen for 'error' events

Core Modules

Watch Example ...

65

var async = require('async');
var fs = require('fs');
var dir = '.';

function getStats(dir, cb) {
 fs.readdir(dir, function (err, files) {
 if (err) return cb(err);

 var stats = {};

 // This function is passed to async.every below.
 var iterator = function (file, cb) {
 // Skip hidden files (start with a period).
 if (/^\./.test(file)) return cb(true);
 // Skip Vim backup files (end with a tilde).
 if (/~$/.test(file)) return cb(true);

 fs.stat(file, function (statErr, stat) {
 if (statErr) {
 err = statErr;
 } else {
 stats[file] = stat;
 }
 cb(!err); // stops async.every when there is an error
 });
 };
 async.every(files, iterator, function (result) {
 cb(err, stats);
 });
 });
}

Gets an fs.Stats object for
every file in a given directory.
dir is a directory path.
cb is a callback that is passed err
and an array of fs.Stats objects.

Core Modules

... Watch Example ...

66

function report(name, oldStat, newStat) {
 if (!oldStat && newStat) {
 console.log(name, 'was created');
 return;
 }

 var modified = newStat.mtime > oldStat.mtime;
 if (modified) {
 var diff = newStat.size - oldStat.size;
 var suffix = Math.abs(diff) === 1 ? 'byte' : 'bytes';
 var desc =
 diff > 0 ? 'increased by ' + diff + ' ' + suffix :
 diff < 0 ? 'decreased by ' + -diff + ' ' + suffix :
 'did not change';
 console.log(name, 'content modified, size', desc);
 }
}

var oldStats;
getStats(dir, function (err, stats) {
 oldStats = stats;
});

Reports activity for a single file.
name is a file name.
oldStat and newStat are fs.Stats objects.

Core Modules

... Watch Example

67

fs.watch(dir, function () {
 getStats(dir, function (err, newStats) {
 if (err) {
 return console.error(err);
 }

 Object.keys(oldStats).forEach(function (name) {
 if (!newStats[name]) {
 console.log(name, 'was deleted');
 }
 });

 Object.keys(newStats).forEach(function (name) {
 report(name, oldStats[name], newStats[name]);
 });

 oldStats = newStats;
 });
});

Under Mac OS X, null is always passed to the
callback for filePath.
The callback is invoked when any file in the directory
is created, deleted, or has its contents modified.
It is not invoked when
• a file is merely accessed
• the owner of a file is changed
• the permissions on a file are changed

Core Modules

Streams

Two types
readable streams - created by fs.createReadStream(file-path, [options])

writable streams - created by fs.createWriteStream(file-path, [options])

options include flags (a mode at bottom of slide 11) and
encoding ('ascii', 'base64', 'binary', 'hex', 'ucs2' or 'utf8')

A stream can be one or both (duplex) types

Classes
Stream inherits from EventEmitter defined in lib/stream.js

ReadStream and WriteStream inherit from Stream defined in lib/fs.js

68

There are several ways to create duplex streams in the core modules including:
the Stream pipe method,
the net.createServer and net.connect functions
(both return a net.Socket object which is a duplex stream)
and the tls.connect function.

Examples of non-duplex streams include:
http.ServerRequest, http.ServerResponse,
fs.ReadStream and fs.WriteStream.

Custom streams of both types can also be created.
For an example, see https://github.com/dominictarr/event-stream.

Core Modules

Readable Streams ...

Events
open - when stream is ready; callback is passed a file descriptor object

data - when data has been read

callback is passed a Buffer object or a string if setEncoding was called on the stream

end - when end of stream is reached

no more 'data' events will be emitted

error - when a read error occurs

close - when underlying file descriptor is closed

Properties
readable - boolean indication of whether the stream can be read

changes to false if an error or end event is delivered or the destroy method is called on the stream

69

Core Modules

... Readable Streams

Methods
setEncoding(encoding) - sets character encoding used

valid values are 'ascii', 'base64', 'binary', 'hex', 'ucs2' and 'utf8'

pause() - temporarily stops 'data' events

resume() - resumes 'data' events

destroy() - closes underlying file descriptor

no more events will be emitted after close

destroySoon() - closes underlying file descriptor

only after writes complete if the stream is also writable

pipe(destination, [options]) - connects this stream to a writable stream

See example on slide 17

70

var fs = require('fs');
var rs = fs.createReadStream('TaleOfTwoCities.txt');
rs.pipe(process.stdout);

everything read from the file
is written to stdout

Core Modules

Reading a File By Lines

71

var fs = require('fs');

function readLines(filePath, cb) {
 var rs = fs.createReadStream(filePath, {bufferSize: 80});
 var leftover = '';

 rs.on('data', function (buf) {
 var lines = buf.toString().split('\n');
 lines[0] = leftover + lines[0];
 leftover = lines.pop(); // chunk at end
 lines.forEach(function (line) {
 cb(line);
 });
 });

 rs.on('end', function () {
 if (leftover.length > 0) {
 cb(leftover);
 }
 });
}

readLines('./story.txt', console.log);

See slightly better
implementation
in node-liner
userland module.

npm install liner

callback is invoked
once for each line

Core Modules

Writable Streams ...

Events
open - when stream is ready; callback is passed a file descriptor object

drain - when “kernel buffer” is empty meaning it is safe to write again

error - when write error occurs

close - when underlying file descriptor has been closed

pipe - when stream is passed to pipe method of a ReadStream

Properties
bytesWritten - number of bytes written so far

writable - boolean indication of whether stream can be written

changes to false if an error event is delivered or
the end or destroy method is called on the stream (see next slide)

72

Kernel buffers are used
internally by Node
to buffer output in case
destination streams
cannot keep up.

Core Modules

... Writable Streams

Methods
write(string, encoding='utf8', [fd]) - writes a string to stream

fd parameter is a UNIX-only, rarely used option

write(buffer) - writes contents of Buffer to stream

end() - terminates stream

end(string, [encoding]) - writes a string to stream and then terminates it

end(buffer) - writes contents of Buffer to stream and then terminates it

destroy() - closes underlying file descriptor

no more events will be emitted after close

destroySoon() - closes underlying file descriptor

only after writes complete if stream is also writable

See example on slide 18

73

Core Modules

Zlib

Supports three kinds of compression and decompression
Deflate - from Wikipedia, “Deflate is a lossless data compression algorithm
that uses a combination of the LZ77 algorithm and Huffman coding.”

Deflate Raw - same as Deflate, but doesn’t append a zlib header

GZIP - based on the Deflate algorithm

Highly configurable

Seven classes - create instances with zlib.createName([options]);

Gzip, Deflate and DeflateRaw are writeable streams that compress

Gunzip, Inflate and InflateRaw are readable streams that decompress

Unzip is a readable stream that detects the compression type and decompresses

Convenience functions
perform seven operations corresponding to the seven classes without streams

deflate, deflateRaw, gzip, gunzip, inflate, inflateRaw and unzip

each takes a string or Buffer object and
a callback function that is passed an Error, if any, and the result as a Buffer

74

var zlib = require('zlib');

Core Modules

Zlib Example

75

var fs = require('fs');
var zlib = require('zlib');

function zipToFile(data, filePath, cb) {
 zlib.gzip(data, function (err, buffer) {
 if (err) return cb(err);
 fs.writeFile(filePath, buffer, cb);
 });
}

function unzipFromFile(filePath, cb) {
 fs.readFile(filePath, function (err, buffer) {
 if (err) return cb(err);
 zlib.gunzip(buffer, function (err, buffer) {
 cb(err, buffer.toString());
 });
 });
}

var filePath = 'message.gz';
var data = 'This is a message';
zipToFile(data, filePath, function (err) {
 if (err) throw err;
 unzipFromFile(filePath, function (err, result) {
 if (err) throw err;
 console.log('result =', result);
 });
});

Core Modules

String Decoder

Not documented yet

Handles writing data from buffers
that do not end in a complete multi-byte character

Used by
core modules fs, http, net, repl and tls

npm’s read module

which it uses for “npm init” to prompt for package.json information

76

var StringDecoder = require('string_decoder').StringDecoder;

Core Modules

Net ...

Provides methods for implementing
TCP servers and clients

Methods
createServer([options], [callback])

typically used server-side

returns a net.Server object

callback is passed a net.Socket object

register listeners for events on socket in callback

connect(port, [host], [callback]) - for TCP
connect(path, [callback]) - for Unix socket

asynchronously creates a new connection

typically used client-side

returns a net.Socket object and passes nothing to callback

host defaults to localhost

createConnection(args)

alias for connect method

77

for communicating between
processes on same host

var net = require('net');

Core Modules

... Net

Methods
isIP(s) - returns 0 if s is not an IP address string, 4 if IPv4, and 6 if IPv6

isIPv4(s) - returns boolean indicating whether s is a version 4 IP address string

pattern is d.d.d.d where d is an integer between 0 and 255

can be represented in 32 bits

isIPv6(s) - returns boolean indicating whether s is a version 6 IP address string

pattern is h:h:h:h:h:h:h:h where each h is a 4 character hex value

can be represented in 128 bits

leading zeros in an h value may be omitted

h values that are all zeros can be replaced by a single zero or omitted

all colons must be retained, except more than two consecutive colons
can be replaced by only two colons once within an address

ex. 1:2:0:0:0:0:7:8 is equivalent to 1:2:::::7:8 and 1:2::7:8

78

Core Modules

net.Server Class ...

Kind of object returned by net.createServer function

Methods
listen(port, [host], callback) - for TCP
listen(path, callback) - for Unix socket

listens for new connections

if host is omitted, will listen for connections from any host

returns nothing and passes nothing to callback

pause(ms)

stop accepting new connections for ms milliseconds, perhaps for throttling

close()

asynchronously stop accepting new connections permanently

a 'close' event is emitted when complete

address()

returns an object containing port and address (IP) properties

79

Core Modules

... net.Server Class

Events
listening - emitted when server is ready to accept connections

connection - emitted when a connection is made

net.Socket object is passed to callback

close - emitted when server is no longer accepting connections

error - emitted when an error occurs

Error object is passed to callback

Properties
maxConnections - set to limit number of connections

connections - will be set to current number of connections

80

register for these with
server.on(event-name, callback);

Core Modules

net.Socket Class ...

Represents a TCP or Unix socket

Kind of object returned by net.connect function

Properties
remoteAddress - remote IP address

remotePort - remote port number

bufferSize - size of Buffer that holds data to be written before it is sent

bytesRead - number of bytes read

bytesWritten - number of bytes written

81

Core Modules

... net.Socket Class ...

Methods
connect(port, [host], callback) - for TCP
connect(path, callback) - for Unix socket

usually net.connect is used instead of this

might use this to implement a custom socket (by writing a new class that inherits net.Socket)
or to reuse a closed Socket to connect to a different server

asynchronously opens a new connection

host defaults to localhost

returns nothing and passes nothing to callback

setEncoding(encoding) - options are 'ascii', 'base64' and 'utf8' (default)

write(data, [encoding], [callback])

encoding defaults to 'utf8', callback is invoked after all data has been written

end(data, [encoding])

optionally writes more data; closes socket; server will receive 'end' event

82

Core Modules

... net.Socket Class ...

Methods
pause() - pauses reading of data; for throttling an upload

resume() - resumes reading of data after a call to pause()

setTimeout(ms, [callback])

invokes callback once if no reads or writes within ms

set to zero (default) for no timeout to wait forever and never invoke a callback

address()

returns IP address and port of socket in a object with address and port properties

destroy() - advanced

setNoDelay(bool) - advanced

setKeepAlive(enable, [initialDelay]) - advanced

83

Core Modules

... net.Socket Class

Events
connect - when connection is established

data - when data is received

callback is passed a Buffer or string containing the data

end - when end() has been called on socket on other end

timeout - when timeout occurs (see setTimeout method)

drain - when write Buffer becomes empty

error - when any socket-related error occurs

callback is passed an Error object

close - when fully closed

callback is passed boolean indicating whether it was closed due to an error

84

Core Modules

net Example

85

var net = require('net');
var PORT = 8019;

var server = net.createServer(function (socket) {
 console.log('client connected');

 socket.on('data', function (data) {
 console.log('received "' + data + '"');
 });

 socket.on('end', function () {
 console.log('client disconnected');
 server.close();
 });

 socket.write('hello');
});

server.on('error', function (err) {
 console.error(err.code === 'EADDRINUSE' ?
 'port ' + PORT + ' is already in use' :
 err);
});

server.listen(PORT, function () {
 console.log('listening on ' + PORT);
});

var net = require('net');

var socket = net.connect(8019, function () {
 console.log('connected to server');
});

socket.on('data', function (data) {
 console.log('received "' + data + '"');
 socket.write('goodbye');
 socket.end();
});

socket.on('end', function (data) {
 console.log('disconnected from server');
});

Server

Client

Output from server
1) listening on 8019
2) client connected
5) received "goodbye"
7) client disconnected

Output from client
3) connected to server
4) received "hello"
6) disconnected from server1

2

3

4

5

7

6

Core Modules

Datagram

User Datagram Protocol (UDP)
supports datagram sockets

Datagram overview
messages are broken into packets

packets are separately addressed and routed

faster because it foregoes the handshaking overhead of TCP

doesn’t guarantee reliability, packet ordering or data integrity

suitable when error checking and correction isn’t needed
or is provided by the application

suitable when dropping packets is better than waiting for them

To create a datagram socket
var dgs = createSocket(type, [callback])

creates a datagram socket of a given type ('udp4' or 'udp6')

optional callback gets 'message' events (more in two slides)

86

var dgram = require('dgram');

Packet size varies based on the
Maximum Transmission Unit (MTU)
of the transmission technology used.

For IPv4 the minimum size is 68 bytes
and the recommended size is 576 bytes.

For IPv6 the minimum size is 1280 bytes.

Typically the actual packet size
is at least 1500 bytes.

“I have a UDP joke to
tell you, but you might
not get it” ... unknown

Core Modules

Datagram Socket Methods

dgs.send(buffer, offset, length, port, address, [callback])

sends a message that is in a specified chunk of a Buffer object

callback is passed err and number of bytes sent

dgs.bind(port, [address])

starts listening on a given port

if address is specified, only listens on specified network interface instead of all

dgs.close()

closes the datagram socket

dgs.address()

gets address of socket in an object with address and port properties

and more

87

see output from
os.networkInterfaces()
later

Core Modules

Datagram Events

'message'

when a message is received

callback is passed a Buffer and rinfo object with address and port properties

'listening'

when socket begins listening

'close'

when call to close method completes

'error'

when an error occurs

callback is passed an Error object

88

Core Modules

Datagram Server Example

89

var dgram = require('dgram');

var type = 'udp4'; // or 'udp6'
var server = dgram.createSocket(type);

server.on('message', function (msg, rinfo) {
 console.log('got "' + msg + '" from ' +
 rinfo.address + ':' + rinfo.port);

 msg = new Buffer('pong');
 server.send(msg, 0, msg.length, rinfo.port, rinfo.address, function (err, bytes) {
 console.log('bytes sent: ', bytes);
 server.close();
 });
});

server.on('error', function (err) {
 console.error(err);
});

server.on('listening', function () {
 var addr = server.address();
 console.log('listening on ' + addr.address + ':' + addr.port);
});

var PORT = 1234;
server.bind(PORT);

Core Modules

Datagram Client Example

90

var dgram = require('dgram');

var type = 'udp4'; // or 'udp6'
var client = dgram.createSocket('udp4');

client.on('message', function (msg, rinfo) {
 console.log('got "' + msg + '" from ' +
 rinfo.address + ':' + rinfo.port);
 client.close(); // only expecting on message
});

client.on('error', function (err) {
 console.error(err);
});

client.on('listening', function () {
 var addr = client.address();
 console.log('listening on ' + addr.address + ':' + addr.port);
});

var msg = new Buffer('ping');
var HOST = 'localhost';
var PORT = 1234;
client.send(msg, 0, msg.length, PORT, HOST, function (err, bytes) {
 console.log('bytes sent: ', bytes);
});

listening on 0.0.0.0:1234
got "ping" from 127.0.0.1:49617
bytes sent: 4

listening on 0.0.0.0:49617
bytes sent: 4
got "pong" from 127.0.0.1:1234

Client Output

Server Output

automatically
selected port

Core Modules

Domain Name System (DNS)

Resolves IP address from a domain name
lookup function

Resolves domain name from an IP address
reverse function

Retrieves many types of DNS records from a domain name
supported DNS record types are
A (IPv4), AAAA (IPv6), CNAME (canonical name), MX (mail exchange),
NS (name server), PTR (reverse IP lookup), TXT (text), SRV (service locator)

resolve function takes an array of DNS record types to retrieve

these functions return a specific type of DNS record:
resolve4, resolve6, resolveCname, resolveMx, resolveNs, resolveTxt, resolveSrv

For information on DNS record types,
see http://en.wikipedia.org/wiki/List_of_DNS_record_types

91

var dns = require('dns');

Core Modules

DNS Example

92

var dns = require('dns');

var domain = 'www.google.com';

dns.lookup(domain, function (err, address, family) {
 if (err) {
 throw err;
 }
 console.log(domain, address, 'IPv' + family);

 dns.reverse(address, function (err, domains) {
 if (err) {
 console.error('reverse lookup failed');
 } else {
 console.log(domains);
 }
 });
});

Output

www.google.com 74.125.65.106 IPv4
['gx-in-f106.1e100.net']

Core Modules

HTTP

Low-level API

Typically the express module is used
which builds on the connect module
which builds on this

so we’ll just cover the basics

Supports streaming of requests and responses
rather than buffering until all the data is ready

Use querystring core module to parse query parameters
covered in more detail later

Can send HTTP requests with http.request function
userland module request is often used instead

93

var http = require('http');

Core Modules

HTTP Example ...

94

var http = require('http');
var qs = require('querystring');

var PORT = 3002;

// Create an HTTP server and give it a 'request' listener.
var srv = http.createServer(function (req, res) {
 var url = req.url;

 // Many browsers, including Chrome, ask for this first.
 if (url === '/favicon.ico') {
 res.statusCode = 404;
 res.end(); // could also return an icon file and 200 status
 return;
 }

 console.log('method =', req.method);
 console.log('url =', url);
 console.log('headers =', req.headers);
 console.log('HTTP version =', req.httpVersion);

 var index = url.indexOf('?');
 var path = url.substring(0, index);
 console.log('path =', path);
 var queryString = url.substring(index + 1);
 var params = qs.parse(queryString); // can’t pass entire URL
 console.log('query parameters =', params);

Sample output is based on browsing
http://localhost:3002/foo/bar?
month=April&color=yellow

see output
two slides
ahead

Core Modules

... HTTP Example ...

95

 // Decide what to write in response based on path and query parameters.
 // Express supports defining “routes” which makes this easier.

 // If there is data in the request body, it can be received in chunks.
 var data = '';
 req.on('data', function (chunk) {
 data += chunk;
 });
 req.on('end', function () {
 // All the data has been received now.
 console.log('data =', data);
 });

 var status = 200;
 var responseHeaders = {
 'Content-Type': 'text/plain'
 };
 // Can set response status and other headers in one call.
 //res.writeHead(status, responseHeaders);

 // Can set response status and each header separately.
 res.statusCode = status;
 res.setHeader('Content-Type', 'text/plain');

chunk size is limited
by TCP packet size

Core Modules

... HTTP Example

96

Output
ready
connection created
method = GET
url = /foo/bar?month=April&color=yellow
headers = { host: 'localhost:3002',
 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.7; rv:9.0.1) Gecko/20100101 Firefox/9.0.1',
 accept: 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
 'accept-language': 'en-us,en;q=0.5',
 'accept-encoding': 'gzip, deflate',
 'accept-charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.7',
 connection: 'keep-alive',
 'cache-control': 'max-age=0' }
HTTP version = 1.1
path = /foo/bar
query parameters = { month: 'April', color: 'yellow' }
data =

 // Write the response body after all headers have been written.

 // Can write response body in one call.
 //res.end('Hello, World!');

 // Can write response body in chunks.
 res.write('Hello');
 res.write(', ');
 res.write('Chunks!');
 res.end();
});

srv.listen(PORT, function () {
 console.log('ready');
});

nothing in request body

Core Modules

Uniform Resource Locator (URL) ...

Contains methods to resolve and parse URL strings

URL object properties

protocol - ex. 'http:'

auth - ex. 'username:password'

host - includes port; ex. 'company.com:3000'

port - port number; ex. '3000'

hostname - ex. 'company.com'

query - query object; ex. {month: 'April', color: 'yellow'}

search - query prepended with ?; ex. '?month=April&color=yellow'

pathname - portion after host and before search; starts with a slash; ex. '/foo/bar'

path - pathname plus search; ex. '/foo/bar?month=April&color=yellow'

hash - fragment identifier; ex. '#baz'

href - entire URL string;
ex. 'http://username:password@company.com:3000/foo/bar?month=April&color=yellow#baz'

97

All examples below assume the full URL is 'http://
username:password@company.com:3000/foo/bar?
month=April&color=yellow#baz'

var url = require('url');

Core Modules

... URL

Functions
parse(urlString, parseQueryString=false, slashesDenoteHost=false)

creates and returns a URL object from a URL string

if parseQueryString is true, query property will be an object where
keys are query parameter names and values are query parameter values;
ex. { month: 'April', color: 'yellow' }

otherwise query property value is just the query string portion as a string without leading ?

if slashesDenoteHost is true, host will be obtained from first slashed part after //;
ex. url.parse('http://foo/bar/baz', false, true) returns a URL object
where host = 'foo', path = '/bar/baz', and pathname is the same

format(urlObject)

takes a URL object and returns a URL string

resolve(from, to)

returns a URL string created by treating from as the base URL and to as a relative URL

see example on next slide

98

Core Modules

URL Example

99

urlObj = { protocol: 'http:',
 slashes: true,
 auth: 'username:password',
 host: 'company.com:3000',
 port: '3000',
 hostname: 'company.com',
 href: 'http://username:password@company.com:3000/foo/bar?month=April&color=yellow#baz',
 hash: '#baz',
 search: '?month=April&color=yellow',
 query: { month: 'April', color: 'yellow' },
 pathname: '/foo/bar',
 path: '/foo/bar?month=April&color=yellow' }
urlString = http://fred:wilma@company.com:3000/foo/bar?month=April&color=yellow#barney
resolvedUrl = http://www.ociweb.com/knowledge-sharing/tech-com/sett

'use strict';
var url = require('url');

var urlString =
 'http://username:password@company.com:3000/' +
 'foo/bar?month=April&color=yellow#baz';
var urlObj = url.parse(urlString, true, true);
console.log('urlObj =', urlObj);

urlObj.auth = 'fred:wilma';
urlObj.query.month = 'September';
urlObj.query.color = 'blue';
urlObj.hash = '#barney';
urlString = url.format(urlObj);
console.log('urlString =', urlString);

var baseUrl = 'http://www.ociweb.com/mark';
var relativeUrl = 'knowledge-sharing/tech-com/sett';
var resolvedUrl = url.resolve(baseUrl, relativeUrl);
console.log('resolvedUrl =', resolvedUrl);

Output

Core Modules

Query Strings

Contains methods to parse and create query strings
part of URLs from ? to end

Used by "url" module

Functions
stringify(obj, sep='&', eq='=')

creates a query string from key/value pairs in obj

why would different delimiter characters ever be desired?

ex. qs.stringify({month: 'April', color: 'yellow'})
returns 'month=April&color=yellow'

parse(str, sep='&', eq='=')

creates an object containing key/value pairs from a query string

ex. qs.parse('month=April&color=yellow')
returns { month: 'April', color: 'yellow' }

other functions are mainly for internal use

100

var qs = require('querystring');

Core Modules

Crypto

Provides functions for working with security credentials
that are used with HTTP and HTTPS

Works with concepts such as
Privacy Enhanced Email (PEM) credential

cryptographic hash

digest

Hash-based Message Authentication Code (HMAC)

cipher / decipher

signer object

verification object

Diffie-Hellman key exchange

asynchronous PBKDF2

Relies on OS openssl command

Beyond my knowledge to say anything further

101

var crypto = require('crypto');

from XKCD

Core Modules

TLS/SSL

Secure Socket Layer (SSL)

Transport Layer Security (TLS) - an upgrade to SSL 3.0

Both are cryptographic protocols for secure internet communication
public/private key infrastructure

prevents eavesdropping and tampering with message content

Functions
tls.createServer(options, [connectionListener])

called by server code

options include key, certificate and certificate authority (CA) file contents

can also set rejectUnauthorized option to true to
reject connections not authorized by a CA in list of authorized CAs

returns a tls.Server object (see next slide)

tls.connect(port, [host], [options], [connectionListener])

called by client code

options include key, certificate and certificate authority (CA) file contents

returns a tls.CleartextStream object (see next slide)

102

var tls = require('tls');

Core Modules

TLS Classes

tls.Server

type of object returned by tls.createServer()

“a subclass of net.Server and has the same methods”

including listen(port)

“Instead of accepting just raw TCP connections, this accepts encrypted connections using TLS or SSL.”

tls.CleartextStream

type of object returned by tls.connect()

has same methods and events as readable and writable streams

“a stream on top of the encrypted stream that makes it possible to
read/write an encrypted data as a cleartext data”

103

Core Modules

TLS Example Server

104

var fs = require('fs');
var tls = require('tls');

var opts = {
 key: fs.readFileSync('mykey.pem'),
 cert: fs.readFileSync('mycert.pem'),
};

var server = tls.createServer(opts, function (cts) {
 console.log('server connected',
 cts.authorized ? 'authorized' : 'unauthorized');

 cts.setEncoding('utf8');

 cts.write('ping');
 cts.on('data', function (data) {
 console.log('got', data, 'from client');
 server.close();
 process.exit(0);
 });
 cts.on('end', function () {
 console.log('got end event from client');
 });
});

server.listen(8000, function() {
 console.log('ready');
});

see HTTPS section (slide 51) for command
to generate key and certificate .pem files

if encoding isn’t specified then data
will be a Buffer instead of a string
(no default encoding)

will only get 'authorized'
if rejectUnauthorized
option is true

Core Modules

TLS Example Client

105

var fs = require('fs');
var tls = require('tls');

var opts = {
 key: fs.readFileSync('mykey.pem'),
 cert: fs.readFileSync('mycert.pem'),
};

var cts = tls.connect(8000, opts);
cts.setEncoding('utf8');
cts.on('secureConnect', function () {
 console.log('client connected',
 cts.authorized ? 'authorized' : 'unauthorized');
});
cts.on('data', function (data) {
 console.log('got', data, 'from server');
 cts.write('pong');
});
cts.on('end', function () {
 console.log('got end event from server; process will exit');
});
cts.on('error', function (e) {
 var msg = e.code === 'ECONNREFUSED' ?
 'failed to connect; is server running?' : e.toString();
 console.error(msg);
});

can also pass this callback to tls.connect();
this will be set to the cts object inside it

if encoding isn’t specified then data
will be a Buffer instead of a string
(no default encoding)

Core Modules

TLS/SSL Advanced Functionality

Start a TLS session on an existing TCP connection

Next Protocol Negotiation (NPN)
TLS handshake extension to use one TLS server
for multiple protocols (HTTP and SPDY)

Server Name Indication (SNI)
TLS handshake extensions to use one TLS server
for multiple hostnames with different SSL certificates

106

Core Modules

HTTPS

HTTP over SSL/TLS
Secure Socket Layer (SSL) preceded Transport Layer Security (TLS)

these are cryptographic protocols

from Wikipedia, “encrypt the segments of network connections above the Transport Layer,
using asymmetric cryptography for key exchange, symmetric encryption for privacy,
and message authentication codes for message integrity”

Need .pem files for key and certificate
“Privacy Enhanced Mail”

one way to create is to run following command and answer prompts
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout mykey.pem -out mycert.pem

https.Server is a subclass of tls.Server

https.request function sends a request to a secure web server

supports same options as http.request function

userland module request is often used instead

107

var https = require('https');

type of certificate
signing request

type of key
management and

size in bits

valid for this
many days

makes key
unencrypted

no password required to use

Core Modules

HTTPS Example

108

var fs = require('fs');
var https = require('https');

var PORT = 3002;
var opts = {
 key: fs.readFileSync('mykey.pem'),
 cert: fs.readFileSync('mycert.pem')
};

var srv = https.createServer(opts, function (req, res) {
 // Many browsers, including Chrome, ask for this first.
 if (req.url === '/favicon.ico') {
 res.statusCode = 404;
 res.end(); // could also return an icon file and 200 status
 return;
 }

 res.statusCode = 200;
 res.end('Hello, World!');
});

srv.listen(PORT, function () {
 console.log('ready');
}); browse with https://localhost:3002 or

run “curl -k https://localhost:3002”
(-k allows SSL connections without certificates

Core Modules

Virtual Machine (VM) ...

Compiles a string of JavaScript code and runs it
or saves it so it can be run later without recompiling

The code does not have access to variables in local scope,
regardless of the vm function used

to run code that can access variables in local scope, use the JavaScript eval function

Syntax errors in the code string passed to these functions
are reported to stderr and an Error is thrown

Functions in this module that run code
return the value of the last expression evaluated

return statements cannot be used in the top-level of a code string,
only inside function definitions within a code string

109

var vm = require('vm');

Core Modules

... VM

Functions
runInThisContext(code, [filename])

global object for code is current global object; assign properties to global to make them accessible

runInNewContext(code, [sandbox], [filename])

global object for code is sandbox object

creates a new context which has overhead

createContext([sandbox])

creates a Context object that can be passed to vm.runInContext()

runInContext(code, context, [filename])

context must be created by calling vm.createContext(sandbox) (see next slide)

global object for code is sandbox object passed to createContext

context object also holds built-in objects and functions

more efficient than runInNewContext when the same context will be used multiple times

createScript(code, [filename])

compiles code and returns a Script object that can be used execute the code later

see Script methods on next slide

110

The optional filename arguments appear
in stack traces to help with debugging.

Core Modules

VM Script Class

Objects created by calling vm.createScript(code)

Methods
runInThisContext()

global object for code is current global object

assign properties to global to make them accessible

runInNewContext([sandbox])

global object for code is sandbox object

111

Core Modules

VM Example

112

var assert = require('assert');
var vm = require('vm');

var code = "Math.pow(x, y)";
var code2 = "console.log('z =', z); " + code;

console.log('global =', global); // has lots of variables and functions
global.x = 3;
global.y = 2;
global.z = 19;
// Note how global functions (in this case just console)
// are explicitly being made available in the sandbox and context.
var sandbox = {x: 2, y: 3, z: 19, console: console};
var context = vm.createContext({x: 2, y: 4, z: 19, console: console});

assert.equal(vm.runInThisContext(code), 9); // 3 ^ 2
assert.equal(vm.runInNewContext(code2, sandbox), 8); // 2 ^ 3
assert.equal(vm.runInContext(code2, context), 16); // 2 ^ 4

var script = vm.createScript(code);
assert.equal(script.runInThisContext(), 9); // 3 ^ 2
assert.equal(script.runInNewContext(sandbox), 8); // 2 ^ 3
assert.equal(script.runInContext(context), 16); // 2 ^ 4

Core Modules

Child Processes

Functions
spawn(command, args=[], [options])

starts a new process that runs a given command and returns a ChildProcess object

args holds command-line flags and arguments

cwd option specifies directory in which command runs (defaults to current)

env option specifies environment variables available in child process (defaults to process.env)

to obtain output, listen for data events on stdout and stderr properties

exec(command, args=[], options, callback)

runs a command in a shell, buffers output to stdout and stderr,
and passes it to a callback function of the form function (err, stdout, stderr)

supports a timeout option

callback is passed status code, stdout Buffer and stderr Buffer

execFile(file-path, args=[], [options], callback)

executes commands in specified file in current process

callback is passed status code, stdout Buffer and stderr Buffer

fork(script-path, args=[], options)

similar to spawn, but returned object has a send method that emits 'message' events

113

all of these return a ChildProcess object

var cp = require('child_process');

process doesn’t end when end
of script is reached; must call
process.exit() in script

Core Modules

ChildProcess Class

Inherits from EventEmitter

Events
exit - emitted after child process ends

callback function takes a status code and a signal

a code is passed on normal termination

a signal is passed if terminated by a signal

Properties
stdin - standard input stream

stdout - standard output stream

stderr - standard error stream

pid - process id

Methods
send(message)

sends message to child process

kill(signal='SIGTERM')

sends a given signal to the child process

114

Core Modules

Child Process Example #1

115

pid = 16511
total 0
drwxr-xr-x 7 Mark staff 238 Jan 28 18:36 addons
drwxr-xr-x 4 Mark staff 136 Dec 7 20:52 async
drwxr-xr-x 3 Mark staff 102 Nov 21 08:50 buffers
drwxr-xr-x 5 Mark staff 170 Nov 15 15:03 callbacks
drwxr-xr-x 8 Mark staff 272 Feb 18 14:04 child_process
...
drwxr-xr-x 5 Mark staff 170 Jan 8 13:19 vm
drwxr-xr-x 4 Mark staff 136 Feb 15 18:38 zlib

exit code = 0
exit signal = null

var child_process = require('child_process');

var cp = child_process.spawn(
 'ls', ['-l', '..']);
console.log('pid =', cp.pid);

cp.stdout.on('data', function (data) {
 console.log('data =', data.toString());
});

cp.on('exit', function (code, signal) {
 console.log('exit code =', code);
 console.log('exit signal =', signal);
});

Output

runs the “ls -l” command
in the parent directory

Core Modules

Child Process Example #2

116

var child_process =
 require('child_process');

var args = ['js', 'require('];
var opts = {cwd: '..'};
var file = 'child_process/myFind.sh';
var cp = child_process.execFile(file, args, opts, function (err, data) {
 if (err) {
 return console.error(err);
 }

 var re = /require\(['"](.*)['"]\)/;
 var requires = {};
 data.split('\n').forEach(function (line) {
 var matches = re.exec(line);
 if (matches) {
 requires[matches[1]] = true;
 }
 });
 Object.keys(requires).sort().forEach(function (req) {
 console.log(req);
 });
});

#!/bin/bash
Finds all files with a given file extension
in and below the current directory
that contain a given string.
For example, myFind java "implements Foo"

if [$# -ne 2]; then
 echo usage: myFind {file-extension} {search-string}
 exit 1
fi

find . -name "*.$1" | xargs grep "$2"

../lib/math

./build/Release/demo

./build/Release/hello

./demo1

./helper
assert
async
child_process
...
util
vm
zlib

Output

finds every required module in the .js files
in a below the parent directory

Core Modules

Cluster

“easily create a network of processes that all share server ports”
works with any TCP-based server, including HTTP and HTTPS

Builds on “Child Processes” module

Initial process is called “master”
only process that listens on selected port

uses inter-process communication (IPC) pipes to communicate with workers

Forked processes are called “workers”
typically want to fork a number of workers not greater than number of processors

get number of processors with os.cpus().length

no guarantees about order of selection of workers to handle requests

distributes connections across workers, but doesn’t distribute requests

once a client gets a connection, all their requests will go to the same worker

117

var cluster = require('cluster');

“The Jewel Box (also known as NGC 4755,

the Kappa Crucis Cluster and Caldwell 94)

is an open cluster in the constellation

of Crux.” ... Wikipedia

“The difference between

cluster.fork() and
child_process.fork()

is simply that cluster allows

TCP servers to be shared

between workers.

cluster.fork is implemented

on top of child_process.fork.

The message passing API

that is available with
child_process.fork

is available with cluster as well.”

Core Modules

Cluster Masters

Can fork workers

Can send messages to workers
worker.send('message');

Can listen for messages from workers
worker.on('message', function (obj) {...});

Can listen for death of workers
cluster.on('death', function (worker) {...});

anything that kills the process triggers this,
including OS kill command and throwing an uncaught exception

can optionally fork replacement workers

typically the only job of master after it forks workers

118

Core Modules

Cluster Workers

Have a unique id
in process.env.NODE_WORKER_ID within their process

Typically start a server such as an HTTP server

Can send messages to their master
process.send(obj);

Can listen for messages from master
process.on('message', function (msg) {...});

Cannot send messages to other workers

Cannot fork more workers

Are killed if their master dies

119

Core Modules

Cluster Example ...

120

var cluster = require('cluster');

if (cluster.isMaster) { // cluster.isWorker is also set
 var requestCount = 0;
 var handleMsg = function (msg) {
 if (msg.cmd === 'gotRequest') {
 requestCount++;
 console.log('requestCount =', requestCount);
 }
 };

 cluster.on('death', function (worker) {
 console.log('worker with pid', worker.pid, 'died - starting new worker');
 worker = cluster.fork();
 worker.on('message', handleMsg);
 });

 // Fork worker processes.
 var cpuCount = require('os').cpus().length;
 for (var i = 1; i < cpuCount; i++) {
 var worker = cluster.fork();
 worker.on('message', handleMsg);
 }

same code is run
for the master
and each worker

Core Modules

... Cluster Example

121

} else { // for workers
 // Start an HTTP server in worker processes.
 var http = require('http');
 var PORT = 8000;
 http.Server(function (req, res) { // not a constructor function
 if (req.url === '/favicon.ico') {
 res.writeHead(404);
 res.end(); // could also return an icon file and 200 status
 return;
 }

 // Simulate taking a while to process request.
 setTimeout(function () {
 res.statusCode = 200;
 res.end('Hello from process ' + process.pid + '!\n');

 console.log('worker with pid', process.pid, 'handled a request');

 // Send message to master process.
 process.send({cmd: 'gotRequest'});
 }, 1000); // one second
 }).listen(PORT);

 var workerId = process.env.NODE_WORKER_ID; // numbered starting from 1
 console.log('worker server', workerId, 'ready, pid', process.pid);
}

1. browse http://localhost:8000
2. kill the process that handled the request
3. refresh the page and note that
 a different process handles the request

Core Modules

Recommended Userland Modules ...

Async
provides many functions that simplify writing
asynchronous code

operations on collections, including functional ones like
map and reduce

control flow

can be used with Node and in browsers

DNode
asynchronous, OO RPC system for calling
remote functions

express
HTTP request routing and redirection

view rendering

built on Connect

Formidable
parses form data, especially file uploads

Jade
HTML template engine, similar to HAML

mkdirp
Unix “mkdir -p” for Node

Moment.js
parses, manipulates and formats dates

mongo-native
Node driver for MongoDB

Optimist
command-line option parsing

122

Core Modules

... Recommended Userland Modules

Request
constructs and sends HTTP requests

Rimraf
Unix “rm -rf” for node

Socket.IO
realtime messaging between Node
and all browsers

sprintf
C “sprintf” function for node

Stylus
translates an alternative CSS syntax
to standard CSS

similar to Sass and LESS

Threads A GoGo
creates and runs JavaScript threads
for asynchronous processing
within a single Node process

Underscore
large collection of generally useful
utility functions

123

Node.js

Node.js Resources

Main site - http://nodejs.org/

API doc - http://nodejs.org/docs/latest/api/

NPM Registry Search - http://search.npmjs.org/

How To Node - http://howtonode.org/

node-toolbox - http://toolbox.no.de/

NodeUp podcast - http://nodeup.com/

Felix Geisendoerfer’s guide - http://nodeguide.com

124

