
Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing
Mark Volkmann

mark@ociweb.com
Object Computing, Inc.

June 4, 2013

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Those Vendors

High-dollar software, hardware and consulting vendors
won’t tell you that most problems do not require
an expensive, complicated enterprise solution
But it’s true!

Do the simplest thing that will work
It is SO much easier to
understand, explain and maintain

2

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Overview ...

“Node's goal is to provide an easy way to build scalable network programs.”
http://nodejs.org/#about

A full programming environment, not just for building “servers”

“The official name of Node is "Node".
The unofficial name is "Node.js" to disambiguate it from other nodes.”

https://github.com/joyent/node/wiki/FAQ

Runs on top of Chrome V8 JavaScript engine

Implemented in C++ and JavaScript

Supported on Linux, Mac OS X and Windows

Created by Ryan Dahl at Joyent

3

passed control of the project
to Isaac Schlueter on 1/30/12

a cartoon from substack

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

... Overview

Event-based rather than thread-based
runs in a single thread

can use multiple processes

inspired by

Reactor pattern - http://en.wikipedia.org/wiki/Reactor_pattern

Python Twisted - http://twistedmatrix.com/

Ruby EventMachine - http://rubyeventmachine.com/

Nginx - http://wiki.nginx.org/Main

Assumes most time consuming operations involve I/O
invoked asynchronously; non-blocking

a callback function is invoked when they complete

4

from Wikipedia,
“The reactor design pattern is
an event handling pattern for
handling service requests delivered
concurrently to a service handler
by one or more inputs.
The service handler then demultiplexes
the incoming requests and
dispatches them synchronously
to the associated request handlers.”

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Chrome V8

From Google

Used by Chrome browser and Node.js

Implemented in C++

Currently supports ECMAScript 5

Node adopts the JavaScript syntax supported by V8
so will support ES6 when V8 supports it

5

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Should You Use It?

Reasons To Use
application can benefit from asynchronous, non-blocking I/O

application is not compute-intensive

V8 engine is fast enough

prefer callback or actor models of concurrency

over thread-based approach with synchronized access to mutable state

same language on client and server

like dynamically typed languages

large number of JavaScript developers

Some issues being addressed
finding packages - there are a large number of them and finding the best ones isn’t easy enough

debugging - stack traces from asynchronously executed code are incomplete

event loop - sometimes difficult to determine why a program isn’t exiting

typically due to open connections

6

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Multiple Threads & Processes

Node uses multiple threads internally
to simulate non-blocking file I/O

You can’t create new threads
unless you use “Threads A GoGo”

https://github.com/xk/node-threads-a-gogo

“provides an asynchronous, evented and/or continuation passing style API
for moving blocking/longish CPU-bound tasks out of Node's event loop
to JavaScript threads that run in parallel in the background
and that use all the available CPU cores automatically;
all from within a single Node process”

Can use multiple, cooperating processes
see “Child Processes” core module

processes created with fork function can emit and listen for messages

see “Clusters” core module

“easily create a network of processes that all share server ports”

7

from Issac Schlueter on 11/7/12,

“Node uses threads for file system IO,
and for some slow CPU-intensive operations,
and for system calls that are not available asynchronously,
and for spawning child processes
(since you can't actually do that without a fork call).

It does *not* use threads for async network IO,
because it's unnecessary, and it certainly does not
spawn a thread for each request to an HTTP server,
or for each outbound HTTP request it makes.”

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Where To Look For Functionality

1. JavaScript
core classes: Arguments, Array, Boolean, Date, Error,
Function, Global, JSON, Math, Number, Object, RegExp, String

2. Core Modules
included with Node

http://nodejs.org/docs/latest/api/

view source at https://github.com/joyent/node

JavaScript is in lib directory

C++ code is in src directory

3. Userland Modules (third party)
typically installed using NPM tool

https://npmjs.org/

31,535 NPM packages on 6/3/13

4. Write yourself

8

see JavaScript reference at
https://developer.mozilla.org/
en-US/docs/JavaScript/Reference

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

The Stack

9

Packages have JavaScript APIs,
but can be partially
implemented in C++.

libuv is a Node-specific abstraction over
Windows Input/Output Completion Port (IOCP)
and Unix libev
(https://github.com/joyent/libuv)

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Why JavaScript?

First-class functions

Closures

Flexible objects
can add attributes and methods at any time

nice syntax for literal objects and arrays

Only language supported by web browsers

Can use same programming language on client and server

Callbacks for asynchronous operations
callbacks vs. promises

10

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

JavaScript Classes

Many people that have only taken a cursory look at JavaScript criticize it

A common complaint is that prototypal inheritance is weird and complicated

Let’s look at that

Not weird and not complicated!

11

function Cylinder(height, diameter) {
 this.height = height;
 this.diameter = diameter;
}

Cylinder.prototype.getVolume = function () {
 var radius = this.diameter / 2;
 return this.height * Math.PI * radius * radius;
};

var cyl = new Cylinder(4, 2);
// Output volume of cylinder with two decimal places.
console.log('volume =', cyl.getVolume().toFixed(2));

cylinder.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Node Versions

Stable versions have even minor release numbers
ex. 0.10.9

Unstable versions have odd minor release numbers
ex. 0.11.2

where work toward next stable version takes place

12

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Primary Node Resources

http://nodejs.org
click “INSTALL” button to download
platform-specific installer for latest stable version

see API docs

Node modules at http://npmjs.org
look at “express” module

Let’s install express
npm install express

13

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Demos

Running Node programs

REPL

Serving static files - HTML, CSS, JavaScript, images, ...

Implementing and calling REST services

Saving data in a NoSQL database

Pushing updates to browser clients using WebSockets

Using multiple processors on web server

14

These slides and the code for the last four demos is available at
https://github.com/mvolkmann/nodeExpressMongoWebSocketsCluster

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Running Node Programs

Pass JavaScript file path to node command
node cylinder.js

Can pass command-line arguments into program
access with process.argv

it’s an array containing 'node', absolute file path to JavaScript file, and command-line arguments

so process.argv[2] holds first command-line argument

15

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

REPL

Tool for evaluating JavaScript statements
outputs the value of each

Useful for verifying understanding

To start, enter node

To load definitions in a JavaScript file enter .load file-path

For help, enter .help

To exit, enter .exit

16

$ node
> .load cylinder.js
... outputs each statement in file and its value ...
> c = new Cylinder(10, 4)
{ height: 10, diameter: 4 }
> c.height
10
> c.getVolume()
125.66370614359172
> .exit

Demo notes:
cd to training/JavaScript/labs/prototypal

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Static File Web Server

Many options
can use core http module, Express, Strata, ...

we will use Express

To install Express
mkdir node_modules

npm install express

Example

To run server, enter node static.js

Browse files in current directory with
http://localhost:1919/file-name

can omit file-name for index.html

17

var express = require('express');
var app = express();
app.use(express.static(__dirname));
app.listen(1919);

static.js

Demo notes:
cd to express directory under nodejs-labs
enter node static.js
browse http://localhost:1919
and http://localhost:1919/google.gif

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

REST Web Server ...

18

var express = require('express');
var app = express();
var book = {}; // just storing data in memory

app.use(express.static(__dirname + '/public')); // serve static files
app.use(express.bodyParser()); // automatically convert JSON requests to objects

function del(req, res) {
 var id = req.params.id;
 if (book[id]) {
 delete book[id];
 res.send(200);
 } else {
 res.send(404);
 }
}

function get(req, res) {
 var id = req.params.id;
 var person = book[id];
 if (person) {
 res.set('Content-Type', 'application/json');
 res.send(200, JSON.stringify(person));
 } else {
 res.send(404);
 }
}

server1.js

Let’s build an addressbook app!

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

... REST Web Server

19

function list(req, res) {
 res.set('Content-Type', 'application/json');
 res.send(200, JSON.stringify(Object.keys(book)));
}

function put(req, res) {
 var id = req.params.id;
 var person = req.body;
 book[id] = person;
 res.send(200);
}

app['delete']('/addressbook/:id', del);
app.get('/addressbook/list', list);
app.get('/addressbook/:id', get);
app.put('/addressbook/:id', put);

var PORT = 3000;
app.listen(PORT);
console.log('Express server listening on port', PORT);

server1.js

Can test with curl command and
browser without creating any HTML.

referred to
as “routes”

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

HTML

20

<!DOCTYPE html>
<html>
 <head>
 <link rel="stylesheet" href="lib/bootstrap/css/bootstrap.min.css">
 <link rel="stylesheet" href="lib/bootstrap/css/bootstrap-responsive.min.css">
 <link rel="stylesheet" href="addressbook.css">
 <script src="lib/jquery-2.0.1.min.js"></script>
 <script src="lib/bootstrap/js/bootstrap.min.js"></script>
 <script src="addressbook.js"></script>
 </head>
 <body>
 ...
 </body>
</html>

index.html

demonstrate responsiveness by
resizing browser window

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Browser JavaScript ...

21

(function () {
 var emailInput, firstNameInput, lastNameInput, phoneInput;
 var deleteBtn, nameList;
 var URL_PREFIX = 'http://localhost:3000/addressbook/';

 function Person(firstName, lastName, email, phone) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.email = email;
 this.phone = phone;
 }

 function add() {
 var id = getId();

 var doneCb = function () {
 insertId(id);
 nameList.val(getKey());
 };

 $.ajax(URL_PREFIX + id, {
 type: 'PUT',
 contentType: 'application/json',
 data: JSON.stringify(makePerson())
 }).done(doneCb).error(failCb);
 }

 function addId(id) {
 var pieces = id.split('-');
 var key = pieces.join(', ');
 nameList.append($('<option>', {id: id}).text(key));
 }

addressbook.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

... Browser JavaScript ...

22

 function clear() {
 firstNameInput.val('');
 lastNameInput.val('');
 emailInput.val('');
 phoneInput.val('');
 }

 function del() {
 var doneCb = function () {
 $('#' + id).remove();
 clear();
 deleteBtn[0].disabled = true;
 };

 var id = getId();
 $.ajax(URL_PREFIX + id, {type: 'DELETE'}).done(doneCb).error(failCb);
 }

 function failCb(err) {
 alert(err.toString());
 console.log('error:', err);
 }

 function getId() {
 return lastNameInput.val() + '-' + firstNameInput.val();
 }

 function getKey() {
 return lastNameInput.val() + ', ' + firstNameInput.val();
 }

addressbook.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

... Browser JavaScript ...

23

 function insertId(id) {
 var pieces = id.split('-');
 var key = pieces.join(', ');

 var option = $('<option>', {id: id}).text(key);

 var added = false;
 nameList.children().each(function (index, op) {
 if (added) return;
 if (id === op.id) {
 added = true; // already exists
 } else if (id < op.id) {
 option.insertBefore(op);
 added = true;
 }
 });

 if (!added) nameList.append(option);
 }

 function load() {
 var doneCb = function (ids) {
 ids.sort().forEach(addId);
 };

 $.getJSON(URL_PREFIX + 'list').done(doneCb).fail(failCb);
 }

 function makePerson() {
 return new Person(
 firstNameInput.val(),
 lastNameInput.val(),
 emailInput.val(),
 phoneInput.val());
 }

addressbook.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

... Browser JavaScript

24

 function select(event) {
 var option = $(event.target);
 // If the select element was selected instead of one of its options ...
 if (option.prop('tagName') !== 'OPTION') return;

 var id = option.attr('id');
 var key = option.text();

 var doneCb = function (person) {
 firstNameInput.val(person.firstName);
 lastNameInput.val(person.lastName);
 emailInput.val(person.email);
 phoneInput.val(person.phone);
 deleteBtn[0].disabled = false;
 };

 $.getJSON(URL_PREFIX + id).done(doneCb).fail(failCb);
 }

 $(function () {
 firstNameInput = $('#firstName');
 lastNameInput = $('#lastName');
 emailInput = $('#email');
 phoneInput = $('#phone');
 nameList = $('#nameList');
 deleteBtn = $('#delete');

 load();

 $('#add').click(add);
 deleteBtn.click(del);
 nameList.click(select);
 });
}());

addressbook.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Where Are We Now?

Works great, but there are two big problems

1) All the data is lost when the server is shut down.

2) If there is more than one client,
 they only see changes of others after a refresh

Let’s fix the first problem

25

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

MongoDB

A popular NoSQL database

To install on Mac OS X
brew install mongodb

To start daemon process
mongod

To start a MongoDB shell for interactively
creating, retrieving, updating deleting data

mongo

To install a Node.js module for MongoDB
npm install mongodb

26

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Web Server With MongoDB ...

27

function getDatabase() {
 var MongoClient = require('mongodb').MongoClient;
 MongoClient.connect('mongodb://localhost:27017/demoDb', function (err, db) {
 if (err) {
 console.error('failed to connect to database:', err);
 } else {
 getCollection(db);
 }
 });
}

function getCollection(db) {
 db.collection('addressbook', function (err, collection) {
 if (err) {
 console.error('failed to get collection:', err);
 } else {
 setupServer(collection);
 }
 });
}

function setupServer(collection) {
 var express = require('express');
 var app = express();
 app.use(express.static(__dirname + '/public')); // serve static files
 app.use(express.bodyParser()); // convert JSON requests to objects

server2.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

... Web Server With MongoDB ...

28

 function getMongoQuery(req) {
 var id = req.params.id;
 var pieces = id.split('-');
 return {lastName: pieces[0], firstName: pieces[1]};
 }

 function del(req, res) {
 collection.remove(getMongoQuery(req), function (err) {
 res.send(err ? 500 : 200, err);
 });
 }

 function get(req, res) {
 var cursor = collection.findOne(getMongoQuery(req), function (err, person) {

 if (err) {
 res.send(500, err);
 } else if (person) {
 res.set('Content-Type', 'application/json');
 res.send(200 ,JSON.stringify(person));
 } else {
 res.send(404);
 }
 });
 }

server2.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

... Web Server With MongoDB ...

29

 function list(req, res) {
 collection.find().toArray(function (err, persons) {
 if (err) {
 res.send(500, err);
 } else {
 var ids = persons.map(function (person) {
 return person.lastName + '-' + person.firstName;
 });
 res.set('Content-Type', 'application/json');
 res.send(200, JSON.stringify(ids));
 }
 });
 }

 function put(req, res) {
 var person = req.body;
 var options = {upsert: true}; // insert if not present
 collection.update(getMongoQuery(req), person, options, function (err) {
 res.send(err ? 500 : 200, err);
 });
 }

server2.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

... Web Server With MongoDB

30

 app['delete']('/addressbook/:id', del);
 app.get('/addressbook/list', list);
 app.get('/addressbook/:id', get);
 app.put('/addressbook/:id', put);

 var PORT = 3000;
 app.listen(PORT);
 console.log('Express server listening on port', PORT);
}

getDatabase();

server2.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Where Are We Now?

Data is persisted across server restarts now

Let’s fix the problem with
sharing changes between clients

31

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

WebSockets

Wikipedia definition
“a web technology providing for bi-directional, full-duplex
communications channels over a single TCP connection”

“The WebSocket API is being standardized by the W3C,
and the WebSocket protocol has been standardized by the IETF”

See “The WebSocket API - W3C Editor's Draft” 23 April 2013
http://dev.w3.org/html5/websockets/

Supports long-lived connections between client and server

Many server and client libraries
client libraries are for non-web clients; modern browsers have built-in support

We will use the Node.js module “ws” at http://einaros.github.io/ws/
to install, npm install ws

32

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

WebServer With WebSockets ...

Add broadcast and setupWebSocket functions on next slide

Add these lines in setupServer after configuring app
to setup use of WebSockets

Add calls to broadcast in del and put functions after response is sent
so all clients are informed about these actions

33

var wsArray = [];
setupWebSocket(app);

broadcast('delete', req.params.id);

broadcast('put', req.params.id);

server3.js

server3.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

... WebServer With WebSockets

34

 function setupWebSocket(app) {
 var WebSocketServer = require('ws').Server;
 var http = require('http');
 var server = http.createServer(app);
 var wss = new WebSocketServer({server: server});
 wss.on('connection', function (ws) {
 wsArray.push(ws);
 });
 server.listen(8080);
 }

 function broadcast(event, id) {
 var obj = {event: event, id: id};
 var msg = JSON.stringify(obj);

 wsArray.forEach(function (ws, index) {
 ws.send(msg, function (err) {
 if (err) wsArray[index] = null; // stop sending to this ws
 });
 });

 // Remove nulls from array.
 wsArray = wsArray.filter(function (ws) { return ws; });
 }

server3.js

happens when a
client disconnects

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Browser JavaScript

In addressbook.js, add the setupWebSocket function
and call it before the call to load in the ready function

35

 function setupWebSocket() {
 var ws = new WebSocket('ws://localhost:8080');
 ws.onmessage = function (event) {
 var obj = JSON.parse(event.data);
 if (obj.event === 'put') {
 insertId(obj.id);
 } else if (obj.event === 'delete') {
 $('#' + obj.id).remove();
 } else {
 console.error('received unrecognized message "' + event.data + '"');
 }
 };
 }

addressbook.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Where Are We Now?

All clients are updated when
any client performs a put or delete now

But every client request is being processed
by a single thread on the server

If we have a large number of clients,
it would be nice to take advantage of
multiple processors in the server machine

36

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Node.js Cluster Module

“easily create a network of processes that all share server ports”
works with any TCP-based server, including HTTP and HTTPS

Builds on “Child Processes” module

Initial process is called “master”
only process that listens on selected port

uses inter-process communication (IPC) pipes to communicate with workers

Forked processes are called “workers”
typically want to fork a number of workers not greater than number of processors

get number of processors with os.cpus().length

no guarantees about order of selection of workers to handle requests

distributes connections across workers, but doesn’t distribute requests

once a client gets a connection, all their requests will go to the same worker

37

“The Jewel Box (also known as NGC 4755,
the Kappa Crucis Cluster and Caldwell 94)
is an open cluster in the constellation
of Crux.” ... Wikipedia

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

HTTP & WebSocket Connections

Browser clients connect to
an HTTP server managed by
one of the cluster workers

a WebSocket managed by
one of the cluster workers

The cluster master and workers each
run in a separate process

Cluster workers can
send messages to their cluster master which
has access to a collection of all the cluster workers
and can send messages to them

Each cluster worker holds
a collection of WebSocket connections
and can send messages to them

38

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Web Server With Cluster ...

Add this to
start of
server code

39

var cluster = require('cluster');
if (cluster.isMaster) return startWorkers();

function startWorkers() {
 var handleMsg = function (worker, msg) {
 Object.keys(cluster.workers).forEach(function (id) {
 var otherWorker = cluster.workers[id];
 // Don't send to sender.
 if (otherWorker.process.pid !== msg.senderPid) {
 otherWorker.process.send(msg);
 }
 });
 };

 var addWorker = function () {
 var worker = cluster.fork();
 worker.on('message', function (msg) {
 handleMsg(worker, msg);
 });
 };

 // If a worker exits, start a new one.
 cluster.on('exit', addWorker);

 // Fork worker processes.
 var cpuCount = require('os').cpus().length;
 for (var i = 1; i < cpuCount; i++) {
 addWorker();
 }
}

doesn’t help clients that were
using the exited worker

server4.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

... Web Server With Cluster ...

Add this in setupServer after call to setupWebSocket

Change broadcast function

40

 // Listen for messages from cluster master.
 process.on('message', function (msg) {
 if (msg.senderPid !== process.pid) sendToClients(msg);
 });

 function broadcast(event, id) {
 var msg = {event: event, id: id, senderPid: process.pid};

 // Send to cluster master.
 process.send(msg);

 sendToClients(msg);
 }

on next slide

server4.js

server4.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

... Web Server With Cluster

Add sendToClients function

41

 function sendToClients(msg) {
 var s = JSON.stringify(msg);
 wsArray.forEach(function (ws, index) {
 ws.send(s, function (err) {
 if (err) wsArray[index] = null; // stop sending to this ws
 });
 });

 // Remove nulls from array.
 wsArray = wsArray.filter(function (ws) { return ws; });
 }

happens when a
client disconnects

server4.js

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Where Are We Now?

The last feature was more complicated,
but hopefully each piece of it is understandable

How difficult would this be to implement
in other programming languages?

42

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Case Study

JavaScript/DDS Integration
DDS is an Object Management Group specification
for a data distribution service for real-time systems,
i.e. 3rd generation pub/sub

43

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Extending DDS Global Data Space to Web

Problem Statement
large Asian bank operating in several countries

expanding country-specific financial trading services to >10K users
using desktop and mobile devices

hold down costs by moving to an all open source solution

Solution Step #1
switch internal trading systems messaging to OpenDDS

implementation of OMG DDS 1.2 and DDS-RTPS 2.1 specifications
Data Centric Publish/Subscribe (DCPS) layer

open source, permissive license with public source repository

core libraries written in C++; includes Java API

configurable transports
TCP, RTPS, UDP-unicast, UDP-multicast, shared memory

44

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Solution Architecture

45

QuickFIX
Feed Handler
OpenDDS

QuickFAST
Feed Handler
OpenDDS

OpenDDS
Node Modules
Web Application

HTML5 / Dojo

FIX - Financial Information eXchange

FAST - FIX Adapted for STreaming

HTTP / WebSocket

Node.js
process

Bank Trading
Systems

Exchanges

External Systems

Internal Systems

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Node.js Resources

Main site - http://nodejs.org/

API doc - http://nodejs.org/docs/latest/api/

NPM Registry Search - https://npmjs.org/

How To Node - http://howtonode.org/

node-toolbox - http://toolbox.no.de/

NodeUp podcast - http://nodeup.com/

Felix Geisendoerfer’s guide - http://nodeguide.com

JavaScript Reference - https://developer.mozilla.org/en-US/docs/JavaScript/Reference

JSLint - http://www.jslint.com/

JSHint - http://www.jshint.com/

46

Copyright © 2012-2013 by Object Computing, Inc. (OCI).
All rights reserved.

CAIT Node.js Briefing

Closing Thought

Take the road LESS COMPLICATED!

});

47

“Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;
Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,
And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.
I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I -
I took the one less traveled by,
And that has made all the difference.”

Robert Frost, “The Road Not Taken”, 1920

