
R. Mark Volkmann
mark@ociweb.com

January 2009

“It (the logo) was designed by my brother, Tom Hickey.
I don't think we ever really discussed the colors
representing anything specific. I always vaguely
thought of them as earth and sky.” - Rich Hickey

pronounced the same as “closure”

“I wanted to involve c (c#), l (lisp) and j (java).
Once I came up with Clojure, given the pun on closure,
the available domains and vast emptiness of the
googlespace, it was an easy decision..” - Rich Hickey

Clojure

Core Beliefs ...
Functional programming is important

helps with concurrency issues
emergence of multi-core processors makes this an issue for all kinds of applications
locking is too hard to use correctly
immutable data along with other mechanisms is easier

provides performance optimization
through code reordering by compiler

can make code easier to understand and test
the result of functions with no side-effects only depends on arguments

Java platform (JVM) is the place to be
portability, stability, performance, security
access to existing Java libraries

no need to reinvent libraries for file I/O, database access, XML, and so on

2

Side-effects include:
changing values of global variables
and performing any kind of I/O

Clojure

... Core Beliefs
Dynamic types and polymorphism are good

see multimethods
Lisp-like syntax is good
code and data have same representation
transformation from Java syntax to Lisp syntax

move { in method definitions to beginning
replace { with (and } with)
remove types (can specify type hints)
remove commas from argument lists
remove semicolon statement terminators

less “noise” than Java (4 -> 2 below)

3

myFunction(arg1, arg2); -> (myFunction arg1 arg2)

// Java
public void hello(String name) {
 System.out.println("Hello, " + name);
}

; Clojure
(defn hello [name]
 (println "Hello," name))

Clojure

Side Effects
In general, functions should not

rely on global data values (only their arguments)
modify global data values
perform I/O

Especially for functions invoked in a transaction
because they may be invoked more than once
if the transaction must be rerun

Some benefits
makes functions easier to understand and test
allows their execution to be reordered and parallelized

It’s up to you to avoid side effects
Clojure doesn’t prevent them

4

Clojure does provide the function io!
which takes a set of expressions to execute.
If it is executed inside a transaction, an
IllegalStateException is thrown.

“using purely functional programming is also
not very useful since, if we allow no side
effects, our program will do nothing except
heat up the CPU” - Simon Peyton Jones

Clojure

Clojure Key Features ...
Functional, inspired by other languages

Lisp (syntax), Haskell (lazy evaluation), ML, Erlang
Concise

results in shorter programs which are easier to write and maintain
Lisp syntax

with enhancements
code is data; can modify the language using the language

Runs on JVM
popular, efficient platform that is constantly being improved
large number of available libraries

Java interop
can call Java methods from Clojure code and Clojure code from Java

5

Clojure

... Clojure Key Features
Sequences - logical lists

examples include all Clojure and Java collections,
streams, directory structures and more

Concurrency without locks
important for multi-threaded, multi-processor applications
see refs, agents and atoms

6

Clojure

Getting Clojure
Prebuilt

download from http://clojure.org
From source

svn co http://clojure.googlecode.com/svn/trunk/ clojure-read-only

cd clojure-read-only

ant clean jar

clojure-contrib from source
the “standard library”
not well-documented yet; see examples in source
svn co http://clojure-contrib.googlecode.com/svn/trunk/ \
clojure-contrib-read-only

cd clojure-contrib-read-only

ant clean jar

7

Clojure

REPL
Read Eval Print Loop

an interactive shell for experimenting with Clojure code
like Ruby’s irb
the “reader” reads program text and produces data structures (mostly lists)
these are evaluated to obtain results that are printed

To start, run clj script - see next slide
To load code from a file, (load-file "file-path")
Special variables

result of last three evaluations are saved in *1, *2 and *3
last exception is saved in *e

to see stack trace (.printStackTrace *e)

To exit, press ctrl-d or ctrl-c

8

Clojure

Running Clojure Code
Create a script like this named clj - why isn’t this supplied?

see http://en.wikibooks.org/wiki/Clojure_Programming/Getting_Started

#!/bin/bash

Runs Clojure on a script file or interactively using a REPL.

CLOJURE_JAR=$CLOJURE_DIR/clojure-read-only/clojure.jar

CONTRIB_JAR=$CLOJURE_DIR/clojure-contrib-read-only/clojure-contrib.jar

BREAK_CHARS="(){}[],^%$#@\"\";:''|\\"

CP=$CLOJURE_JAR:$CONTRIB_JAR:$JLINE_JAR

If there are no command-line arguments ...

if [-z "$1"]; then

 rlwrap --remember -c -b $BREAK_CHARS -f $HOME/.clj_completions \

 java -cp $CP clojure.main --init ~/user.clj --repl

else

 java -cp $CP clojure.lang.Script $1 -- $*

fi

9

rlwrap supports tab completion, paren matching,
command recall across sessions, and vi or emacs keystrokes.
See http://utopia.knoware.nl/~hlub/uck/rlwrap/.
Another option is JLine.

For more options, run
java -jar ./clojure/trunk/clojure.jar -help

Clojure

Hello World!
hello.clj
(println "Hello World!")

To run
$ clj hello.clj

To get documentation on any function,
even ones you wrote
$ clj
user=> (doc function-name)

To get documentation on all functions whose name
or documentation match a given regex
$ clj
user=> (find-doc "regex-string")

10

For example, to find
all the predicate functions,
(find-doc "\\?$")

Alternative
Add #!/usr/bin/env clj as first line of .clj
files.

The doc function generates a description of
the allowed arguments from the code and outputs
the function doc-string if one was provided.

Clojure

Invoking From Java -
Option 1

From a Java application,
read a text file containing Clojure code
and invoke specific functions it defines
import clojure.lang.RT;

import clojure.lang.Var;

...

// path must be in CLASSPATH

RT.loadResourceScript("path/name.clj");

Var function = RT.var("namespace", "function-name");

function.invoke("arg1", "arg2", ...);

11

Clojure

Invoking From Java -
Option 2

Compile Clojure code to bytecode
and use it from a Java application
just like any other Java code

easy if your Clojure code implements an existing Java interface
(ns namespace

 (:gen-class :implements [java-interface]))

(defn -function-defined-in-interface [this arg1 arg2 ...]

 ...)

Note
defn names for functions defined in the interface begin with "-"
every method takes an extra, first "this" argument
to generate the .class file, use
(compile namespace) or clojure.lang.Compile

12

Clojure

Books
Only one now ... “Programming Clojure”

Stuart Halloway, Pragmatic Programmers
Website

http://pragprog.com/titles/shcloj/programming-clojure
has example code, errata and a forum

Running example code
$ clj

user=> (require 'examples.introduction)

user=> (take 10 examples.introduction/fibs)

take returns a lazy sequence of the first n items in a collection
namespaces are separated from names by a /

examples.introduction is the namespace of the fibs function

13

Clojure

Processing Order
Read-time

reader macros and “normal” macros are converted to non-macro forms
macros only evaluate their arguments if and when directed to do so

Compile-time
forms, including function calls, are compiled to Java bytecode
not interpreted

Run-time
Java bytecode is executed
functions evaluate all their arguments before running

14

Clojure

The Clojure “reader” looks for forms in program text
and creates data structures from them
Supported forms include

no value - nil; treated as false in boolean contexts; same as Java’s null
boolean - true or false
character - \char, \newline, \space, \tab - uses java.lang.Character
number - integer, decimal or ratio; automatically uses BigInteger when needed
keyword - name that begins with :; like Java interned Strings
symbol - names things like variables and functions

composed of letters, digits (not first), + - / | ? . _
string - "char*" - uses java.lang.String
list - '(item*) - allows duplicates; not indexable
vector - [item*] - similar to a list, but indexable like an array (w/ get)
set - #{ item* } - like list, but no duplicates
map - { item-pair* } - each item-pair is a key and value separated by a space

Forms

15

Clojure collections

'foo evaluates to the symbol
foo evaluates to the value

All forms except symbols
and lists are literals,
i.e. they evalute to themselves.

lists are evaluated literally
only if they are quoted

6/9 is a ratio that will
be represented by 2/3.
Math with ratios
maintains precision.

keywords and symbols have a name
and an optional namespace

empty lists () evaluate
to themselves

Clojure

Clojure Collections
Include

lists - '(items) or (list items)
a singly linked list
without the quote it is evaluated as a function call

vectors - [items] or (vector items)
a dynamic array; can be treated as a map with integer index keys
often used in place of lists to avoid need to quote
to avoid being evaluated as a function call

sets - #{items} or (hash-set items)
items must be unique

maps - #{pairs} or (hash-map pairs)
associative array of key/value pairs

sorted-set - (sorted-set items)
sorted-map - (sorted-map pairs)
and(sorted-map-by comparator pairs)
and more that are used internally

16

See diagram showing relationships at
http://tinyurl.com/clojure-classes

Clojure

... Clojure Collections ...
All are immutable
All are heterogenous

can hold a variety of types
All are “persistent”

“support efficient creation of modified versions
by utilizing structural sharing”

works because they are immutable
not related to persistent storage

see http://en.wikipedia.org/wiki/Persistent_data_structure

17

Clojure

Vectors
To create

[:a 2 "three"]
(vector :a 2 "three")
(vec another-collection)

To access elements
indexes are zero-based
(def my-vector [2 5 7])
(get my-vector 1) -> 5 - returns nil if index is out of bounds
(nth my-vector 1) -> 5 - can throw IndexOutOfBoundsException
(my-vector 1) -> 5 - vectors are a function of their indexes
integers are not functions of vectors - can’t use (1 my-vector)

18

Clojure

Sets
To create

#{} - an empty set
#{:a 2 "three"}
(set :a 2 "three")

To put an empty set into a variable,
(def mySet (ref #{}))

To add a value to the set,
(dosync (commute mySet conj value))

dosync evaluates its argument in an STM
yikes that’s verbose!

To dereference the set from the variable
(deref mySet)

19

Clojure

Maps ...
To create

{ key1 value1 key2 value2 ... }
often keywords are used for keys because comparing them is fast

can get the name of a keyword as a string - (name :foo) -> "foo"
(def my-map {:a 1 :b 2})

To get the value of a key, returning nil if not found
(get map key) or (get map key not-found-value)
maps are functions of keys and keys are functions of maps
(map key) or (key map)
(my-map :b) or (:b my-map)

To get an entry, returning nil if not found
(find map key)
(find my-map :b) -> <:b 2> (printed form of an entry)

20

use key and val functions
to get pieces of an entry

Clojure

... Maps
To determine if a key is present

(contains? map key)

To get a new map with entries added
(assoc map key value key value ...)
(assoc my-map :c 3 :d 4)

To get a new map with entries removed
(dissoc map keys)
(dissoc my-map :a :c)

To get all the keys or all the values as a sequence
(keys map)
(values map)

21

Clojure

Sequences ...
Logical list of things; view on a collection

not a data structure
not a copy of the collection

Immutable
Supported by classes that
implement the clojure.lang.ISeq interface

extends clojure.lang.IPersistentCollection
Many types can be treated as sequences

Clojure and Java collections, strings, regex matches,
streams, XML, directory structures, SQL results
most functions that operate on “seq-able” things
begin by calling seq on their argument
when treating a map as a sequence,
each key/value pair is a vector containing the key and value

22

Clojure

... Sequences
Operations supported for all sequences

get first - (first seq) instead of Lisp car
get rest - (rest seq) instead of Lisp cdr

returns a new sequences with the first item removed or
nil (not an empty sequence; logically false) if the sequence only contains one item
nice because nil is logically false whereas an empty list is not

“construct” new sequence with one item added to front
(cons item seq) same as Lisp cons
can usually use conj instead

“conjoin” items to a sequence to create a new sequence
where the items are added depends on the collection type
(conj seq items)

get size - (count seq)
create a new, empty collection of the same type -(empty seq)
many sequence function eliminate the need to write loops

23

The Lisp car function stands for
“contents of the address register”.
The Lisp cdr function stands for
“contents of the decrement register”.

Lists conjoin at front.
Vectors conjoin at end.
Maps conjoin key/value entries or
whole other maps.

Clojure

Lazy Sequences
Most sequences are lazy

items are only evaluated when requested
allows processing of sequences that are larger than the available memory
can force evaluation of all items with doall function

Examples of creating a lazy sequence
(defn f [x] (/ (* x x) 2.0))

(take 5 (map f (iterate inc 0)))

(defn next-value [x]

 (println "next-value: x =" x) ; so we know if invoked

 (+ x x 1))

(let [start-value 2

 my-sequence (iterate next-value start-value)]

 (doseq [x (take 3 my-sequence)] (println x)))

24

Output
2
next-value: x = 2
5
next-value: x = 5
11

Result
(0.0 0.5 2.0 4.5 8.0)

can also use lazy-cons,
lazy-cat and proxies to
implement lazy sequences

Clojure

StructMaps ...
Immutable maps used in place of Java Beans
Optimized

each instance shares a common set of keys, so doesn’t need to repeat them
can add entries with new keys not defined for the struct

To define
use keywords for keys (start with a colon)
long way - (def name (create-struct key+))
short way - (defstruct name key+)

defstruct is a macro which can be changed if needed,
for example, to add logging of instance creation

proper hashCode and equals methods are generated
example

(defstruct car-struct :make :model :year :color)

25

Clojure

... StructMaps ...
To create an instance

(struct name value+)
where the order of the values matches the order of the keys

example
(def car (struct car-struct "Toyota", "Prius", 2009, Color/YELLOW)

To access fields
structs are maps
(println (car :year) (car :model)) ; outputs 2009 Prius

26

(import '(java.awt Color))

Clojure

... StructMaps
// Java way

public class Car {

 private String make;

 private String model;

 private int year;

 public Car(String make, String model, int year) {

 this.make = make;

 this.model = model;

 this.year = year;

 }

 public String getMake() { return make; }

 public String getModel() { return model; }

 public String getYear() { return year; }

}

Car c = new Car("BMW", "Z3", 2001);

System.out.println("The year is " + c.getYear);

27

; Clojure way

; Define a struct (actually a StructMap) for cars.

(defstruct car :make :model :year)

; Optionally define an accessor function.

(def year (accessor car :year))

(let

 ; Create a struct instance.

 [c (struct car "BMW" "Z3" 2001)]

 (println "The year is" (c :year))

 ; Same using the accessor function.

 (println "The year is" (year c))

)

Clojure

Destructuring
Functions can take a collection and
extract parts of it in the argument list

supported by defn, fn, let and loop
With lists
(defn add-2nd-and-3rd [[_ p2 p3]] (+ p2 p3))
(add-2nd-and-3rd [3 4 5 6]) -> 9

With maps
(defstruct car :make :model :year :color)
(defn print-color-and-model [{c :color m :model}]
 (println c m))
(def my-car (struct car "BMW" "Z3" 2001 "yellow"))

(print-color-and-model my-car)

28

underscore means don’t care
about corresponding item

Clojure

Defining Functions
Example - need a different example from book
(defn greet [name]
 (println (str "Hello " name)))

str converts a list of arguments to strings
and concatenates them
puts the function “greet” into the default namespace “user”

full name is user/greet

Can also have a different body for each arity
(defn my-function
 ([] (prn "no ags"))
 ([x] (prn "one arg"))
 ([x y] (prn "two args")))

29

