
ANTLR 3
Mark Volkmann

mark@ociweb.com
Object Computing, Inc.

2008

ANTLR 3

Outline
‣ ANTLR Overview

‣ Math Language Description

‣ Grammar Syntax

‣ Lexer Rules

‣ Whitespace & Comments

‣ Hidden Tokens

‣ Math Lexer Grammar

‣ Token Specification

‣ Rule Syntax

‣ ASTs

‣ Math Parser Grammar

‣ ANTLRWorks

‣ Rule Actions

‣ Attribute Scopes

‣ Math Tree Parser Grammar

‣ Using Generated Classes

‣ Ant Tips

‣ ANTLRWorks
Remote Debugging

‣ StringTemplate

‣ Lookahead

‣ Semantic Predicates

‣ Syntactic Predicates

‣ Error Handling

‣ gUnit

‣ References

2

Key:
Fundamental Topics
Our Example
Advanced Topics

ANTLR 3

‣ ANother Tool for Language Recognition
‣ written by Terence Parr in Java

‣ Easier to use than most/all similar tools
‣ Supported by ANTLRWorks
‣ graphical grammar editor and debugger

‣ written by Jean Bovet using Swing

‣ Used to implement
‣ “real” programming languages

‣ domain-specific languages (DSLs)

‣ http://www.antlr.org
‣ download ANTLR and ANTLRWorks here

‣ both are free and open source

‣ docs, articles, wiki, mailing list, examples

ANTLR Overview

3

Ter

I’m a
professor at the
University of San

Francisco.

Jean

I worked with
Ter as a masters
student there.

ANTLR 3

ANTLR Overview ...
‣ Uses EBNF grammars
‣ Extended Backus-Naur Form

‣ can directly express optional and repeated elements

‣ supports subrules (parenthesized groups of elements)

‣ Supports many target languages
for generated code
‣ Java, Ruby, Python, Objective-C, C, C++ and C#

‣ Provides infinite lookahead
‣ most parser generators don’t

‣ used to choose between rule alternatives

‣ Plug-ins available for
IDEA and Eclipse

4

BNF grammars require more
verbose syntax to express these.

ANTLR 3

ANTLR Overview ...
‣ Supports LL(*)
‣ LL(k) parsers are top-down parsers that

‣ parse from Left to right

‣ construct a Leftmost derivation of the input

‣ look ahead k tokens

‣ LR(k) parsers are bottom-up parsers that
‣ parse from Left to right

‣ construct a Rightmost derivation of the input

‣ look ahead k tokens

‣ LL parsers can’t handle left-recursive rules

‣ most people find LL grammars easier to understand than LR

‣ Supports predicates
‣ aid in resolving ambiguities (non-syntactic rules)

5

Wikipedia has
good descriptions
of LL and LR.

ANTLR 3

ANTLR Overview ...
‣ Three main use cases

‣ 1) Implementing “validators”
‣ generate code that validates that input obeys grammar rules

‣ 2) Implementing “processors”
‣ generate code that validates and processes input

‣ could include performing calculations, updating databases,
reading configuration files into runtime data structures, ...

‣ our Math example coming up does this

‣ 3) Implementing “translators”
‣ generate code that validates and translates input

into another format such as
a programming language or bytecode

‣ covered when we discuss “StringTemplate” later

6

no actions or rewrite rules

actions but no rewrite rules

actions containing printlns
and/or rewrite rules

We’ll explain actions
and rewrite rules later.

ANTLR 3

Projects Using ANTLR
‣ Programming

languages
‣ Boo

‣ http://boo.codehaus.org

‣ Groovy
‣ http://groovy.codehaus.org

‣ Mantra
‣ http://www.linguamantra.org

‣ Nemerle
‣ http://nemerle.org

‣ XRuby
‣ http://xruby.com

‣ Other tools
‣ Hibernate

‣ for its HQL to SQL query translator

‣ Intellij IDEA

‣ Jazillian
‣ translates COBOL, C and C++ to Java

‣ JBoss Rules (was Drools)

‣ Keynote (Apple)

‣ WebLogic (Oracle)

‣ too many more list!

7

See showcase and testimonials at
http://antlr.org/showcase/list and
http://www.antlr.org/testimonial/.

ANTLR 3

Books

‣ “ANTLR Recipes”? in the works
‣ another Pragmatic Programmers book from Terence Parr

8

ANTLR 3

Other DSL Approaches
‣ Languages like Ruby and Groovy

are good at implementing DSLs, but ...
‣ The DSLs have to live within

the syntax rules of the language
‣ For example
‣ dots between object references and method names

‣ parameters separated by commas

‣ blocks of code surrounded by { ... } or do ... end

‣ What if you don’t want these
in your language?

9

ANTLR 3

Conventions
‣ ANTLR grammar syntax makes frequent use

of the characters [] and { }
‣ In these slides
‣ when describing a placeholder, I’ll use italics

‣ when describing something that’s optional, I’ll use item?

10

ANTLR 3

Some Definitions
‣ Lexer
‣ converts a stream of characters to a stream of tokens

‣ Parser
‣ processes a stream of tokens, possibly creating an AST

‣ Abstract Syntax Tree (AST)
‣ an intermediate tree representation of the parsed input that

‣ is simpler to process than the stream of tokens

‣ can be efficiently processed multiple times

‣ Tree Parser
‣ processes an AST

‣ StringTemplate
‣ a library that supports using templates with placeholders

for outputting text (for example, Java source code)

11

character
stream

Lexer

token
stream

Parser

AST

Tree
Parser

template
calls

text
output

Token objects know their start/stop character stream index,
line number, index within the line, and more.

ANTLR 3

General Steps
‣ Write grammar
‣ can be in one or more files

‣ Optionally write StringTemplate templates
‣ Debug grammar with ANTLRWorks
‣ Generate classes from grammar
‣ these validate that text input conforms to the grammar and

execute target language “actions” specified in the grammar

‣ Write application that uses generated classes
‣ Feed the application

text that conforms to the grammar

12

ANTLR 3

Let’s Create A Language!
‣ Features
‣ run on a file or interactively

‣ get help - ? or help

‣ one data type, double

‣ assign values to variables - a = 3.14

‣ define polynomial functions - f(x) = 3x^2 - 4x + 2

‣ print strings, numbers, variables and function evaluations -
print "The value of f for " a " is " f(a)

‣ print the definition of a function and its derivative -
print "The derivative of " f() " is " f'()

‣ list variables and functions -
list variables and list functions

‣ add/subtract functions - h = f - g
‣ the function variables don’t have to match

‣ exit - exit or quit

13

Input:
f(x) = 3x^2 - 4
g(y) = y^2 - 2y + 1
h = f - g
print h()

Output:
h(x) = 2x^2 + 2x - 5

ANTLR 3

Example Input/Output
a = 3.14

f(x) = 3x^2 - 4x + 2

print "The value of f for " a " is " f(a)

print "The derivative of " f() " is " f'()

list variables

list functions

g(y) = 2y^3 + 6y - 5

h = f + g

print h()

14

The value of f for 3.14 is 19.0188

The derivative of f(x) = 3x^2 - 4x + 2

is f'(x) = 6x - 4

of variables defined: 1

a = 3.14

of functions defined: 1

f(x) = 3x^2 - 4x + 2

h(x) = 2x^3 + 3x^2 + 2x - 3

ANTLR 3

BA

Example AST

15

A

B

drawn by
ANTLRWorks

automatically supplied root node

ANTLR 3

Key:
provided
generated
written

Processor

Function

Polynomial

Term

TreeParserLexer

BaseRecognizer

Parser

Important Classes

16

MathTreeMathLexer MathParser

Some prefer writing these manually instead
of generating them from a grammar. See
http://jazillian.com/articles/treewalkers.html.

ANTLR 3

ANTLR Documentation

17

http://antlr.org

ANTLR 3

Grammar Syntax

grammar-type? grammar grammar-name;

grammar-options?

token-spec?

attribute-scopes?

grammar-actions?

rule+

18

3 types: lexer, parser and tree;
defaults to combined lexer and parser

The classes generated by ANTLR
will contain a method for each rule.

Syntax elements will be discussed
in the order they are needed
in our Math language.

Comments use the
same syntax as Java.

must match the filename
with a “.g” extension

ANTLR 3

Grammar Options
‣ These include
‣ AST node type - ASTLabelType = CommonTree

‣ used in grammars that create or parse ASTs

‣ infinite lookahead - backtrack = true
‣ provides infinite lookahead for all rules; parsing is slower with this on

‣ limited lookahead - k = integer

‣ output type - output = AST | template
‣ choose template when using the StringTemplate library

‣ don’t set if not producing output or doing so with printlns in actions

‣ token vocabulary - tokenVocab = grammar-name
‣ allows one grammar file to use tokens defined in another

(with lexer rules or a token spec.); reads generated .tokens files

‣ Specified with

19

don’t need quotes around
single word values

can use your own class
to represent AST nodes

options {
 name = 'value';
 . . .
}

ANTLR 3

Grammar Actions
‣ Add to the generated code
‣ @grammar-type::header { ... }
‣ inserts contained code before the class definition

‣ commonly used to specify a package name
and import classes in other packages

‣ @grammar-type::members { ... }
‣ inserts field declarations and methods inside the class definition

‣ commonly used to
‣ define constants and attributes accessible to

all rule methods in the generated class

‣ define methods used by multiple rule actions

‣ override methods in the superclasses of the generated classes

‣ useful for customizing error reporting and handling

‣ @rulecatch

20

grammar-type
must be lexer,
parser (the default)
or treeparser

see discussion on “Error Handling” later

ANTLR 3

Lexer Rules
‣ Need one for every kind of token

to be processed in parser grammar
‣ Name must start uppercase
‣ typically all uppercase

‣ Assign a token name to
‣ a single literal string found in input

‣ a selection of literal strings found in input

‣ one or more characters and ranges of characters
‣ can use cardinality indicators ?, * and +

‣ Can refer to other lexer rules
‣ “fragment” lexer rules
‣ do not result in tokens

‣ are only referenced by other lexer rules

21

The next lexer rule used is the one
that matches the most characters.
If there is a tie, the one listed first
is used, so order matters!

See LETTER and DIGIT rules
in the upcoming example.

Regular expressions
aren’t supported.

ANTLR 3

Whitespace & Comments
‣ Handled in lexer rules
‣ Two common options
‣ throw away - skip();

‣ write to a different “channel” - $channel = HIDDEN;

‣ Examples

22

The ANTLRWorks debugger
input panel doesn’t
display skipped characters,
but does display hidden ones.

constant defined
in BaseRecognizer;
same value as
Token.HIDDEN_CHANNEL

WHITESPACE: (' ' | '\t')+ { $channel = HIDDEN; };

NEWLINE: ('\r'? '\n')+;

SINGLE_COMMENT: '//' ~('\r' | '\n')* NEWLINE { skip(); };

MULTI_COMMENT
options { greedy = false; }
 : '/*' .* '*/' NEWLINE? { skip(); };

The greedy option defaults to true,
except for the patterns .* and .+,
so it doesn’t need to be specified here.
When true, the lexer matches as much
input as possible. When false, it stops
when input matches the next element.

Don’t skip or hide NEWLINEs
if they are used as
statement terminators.

ANTLR 3

Hidden Tokens
‣ By default the parser only processes

tokens from the default channel
‣ Can request tokens from other channels
‣ tokens are assigned unique, sequential indexes

regardless of the channel to which they are written

‣ Token constants and methods
‣ public static final int DEFAULT_CHANNEL

‣ public static final int HIDDEN_CHANNEL

‣ public int getChannel() // where this Token was written

‣ public int getTokenIndex() // index of this Token

‣ CommonTokenStream methods
‣ public Token get(int index)

‣ public List getTokens(int start, int stop)

‣ public int index() // returns index of the last Token read

23

CommonTokenStream class
implements TokenStream interface

ANTLR 3

Our Lexer Grammar
lexer grammar MathLexer;

@header { package com.ociweb.math; }

APOSTROPHE: '\''; // for derivative
ASSIGN: '=';
CARET: '^'; // for exponentiation
FUNCTIONS: 'functions'; // for list command
HELP: '?' | 'help';
LEFT_PAREN: '(';
LIST: 'list';
PRINT: 'print';
RIGHT_PAREN: ')';
SIGN: '+' | '-';
VARIABLES: 'variables'; // for list command

NUMBER: INTEGER | FLOAT;
fragment FLOAT: INTEGER '.' '0'..'9'+;
fragment INTEGER: '0' | SIGN? '1'..'9' '0'..'9'*;

24

We want the generated lexer class
to be in this package.

ANTLR 3

Our Lexer Grammar ...
NAME: LETTER (LETTER | DIGIT | '_')*;
STRING_LITERAL: '"' NONCONTROL_CHAR* '"';

fragment NONCONTROL_CHAR: LETTER | DIGIT | SYMBOL | SPACE;
fragment LETTER: LOWER | UPPER;
fragment LOWER: 'a'..'z';
fragment UPPER: 'A'..'Z';
fragment DIGIT: '0'..'9';
fragment SPACE: ' ' | '\t';

// Note that SYMBOL omits the double-quote character,
// digits, uppercase letters and lowercase letters.
fragment SYMBOL: '!' | '#'..'/' | ':'..'@' | '['..'`' | '{'..'~';

// Windows uses \r\n. UNIX and Mac OS X use \n.

// To use newlines as a terminator,
// they can't be written to the hidden channel!
NEWLINE: ('\r'? '\n')+;
WHITESPACE: SPACE+ { $channel = HIDDEN; };

25

ANTLR 3

Token Specification
‣ The lexer creates tokens

for all input character sequences
that match lexer rules

‣ It can be useful to create other tokens that
‣ don’t exist in the input (imaginary)

‣ often serve to group other tokens

‣ have a better name than is found in the input

‣ Do this with a token specification
in the parser grammar
‣ tokens {

 imaginary-name;
 better-name = 'input-name';
 . . .
}

26

See all the uppercase token names
in the AST diagram on slide 15.

We need this for the imaginary tokens
DEFINE, POLYNOMIAL, TERM,
FUNCTION, DERIVATIVE and COMBINE.

ANTLR 3

Rule Syntax

fragment? rule-name arguments?

(returns return-values)?

throws-spec?

rule-options?

rule-attribute-scopes?

rule-actions?

 : token-sequence-1

 | token-sequence-2

 ...

;

exceptions-spec?

27

only for
lexer rules

include backtrack and k
options {
 ...
}

to customize exception
handling for this rule

Each element in these alternative sequences
can be followed by an action which is
target language code in curly braces.
The code is executed immediately after
a preceding element is matched by input.

add code before
and/or after code in
the generated method
for this rule

ANTLR 3

Creating ASTs
‣ Requires grammar option output = AST;
‣ Approach #1 - Rewrite rules
‣ appear after a rule alternative

‣ the recommended approach in most cases
‣ -> ^(parent child-1 child-2 ... child-n)

‣ Approach #2 - AST operators
‣ appear in a rule alternative, immediately after tokens

‣ works best for sequences like mathematical expressions

‣ operators
‣ ^ - make new root node for all child nodes at the same level

‣ none - make a child node of current root node

‣ ! - don’t create a node

‣ parent^ '('! child-1 child-2 ... child-n ')'!

28

can’t use both
approaches in
the same rule
alternative!

often used for bits of syntax that
aren’t needed in the AST such as
parentheses, commas and semicolons

ANTLR 3

Parse Tree
drawn by

ANTLRWorks

Parse Trees and ASTs

29

AST

AST
drawn by

ANTLRWorks

EOF is a predefined token that represents the
end of input. The start rule should end with this.

grammar ASTExample;

options { output = AST; }

tokens { BLOCK; }

script: statement* EOF -> statement*;

statement: assignment | ifThenElse;

assignment: NAME '=' expression TERMINATOR

 -> ^('=' NAME expression);

expression: value (('+' | '-')^ value)*; // no '*' or '/'

ifThenElse:

 'if' '(' condition ')' b1=block ('else' b2=block)?

 -> ^('if' condition $b1 $b2?);

condition: value RELATION^ value;

block: '{' statement* '}' -> ^(BLOCK statement*);

value: NAME | NUMBER;

NAME: LETTER (LETTER | DIGIT | '_')*;

NUMBER: '-'? DIGIT+; // just integers

fragment DIGIT: '0'..'9';

fragment LETTER: 'A'..'Z' | 'a'..'z';

RELATION: '<' | '<=' | '==' | '>=' | '>';

TERMINATOR: ';';

WHITESPACE: (' ' | '\t' | '\r' | '\n')+ { $channel = HIDDEN; };

Grammar with AST operators
and rewrite rules

Input
a = 19;

if (a < 10) {

 b = 1;

} else {

 b = 2;

}

Parse trees show the depth-first
order of rules that are matched.

a combined
lexer/parser
grammar

“Labels” like b1
and b2 are used
to refer to non-
unique elements.

ANTLR 3

Declaring Rule Arguments
and Return Values

rule-name[type1 name1, type2 name2, ...]

returns [type1 name1, type2 name2, ...] :

 ...

;

30

return values;
can have more than one

arguments

ANTLR generates a class to use as the return type
of the generated method for the rule.

Instances of this class hold all the return values.

The generated method name matches the rule name.

The name of the generated return type class
is the rule name with “_return” appended.

ANTLR 3

term[String fnt, String fvt]
 // tv = term variable
 : c=coefficient? (tv=NAME e=exponent?)?
 // What follows is a validating semantic predicate.
 // If it evaluates to false, a FailedPredicateException will be thrown.
 { tv == null ? true : ($tv.text).equals($fvt) }?
 -> ^(TERM $c? $tv? $e?)
 ;
 catch [FailedPredicateException fpe] {
 String tvt = $tv.text;
 String msg = "In function \"" + fnt +
 "\" the term variable \"" + tvt +
 "\" doesn't match function variable \"" + fvt + "\".";
 throw new RuntimeException(msg);
 }

This catches bad function
definitions such as f(x) = 2y.

term variables must match
their function variable

Using Rule Arguments

31

To get the text value from a
variable that refers to a Token
object, use “$var.text”.

define
 : fn=NAME LEFT_PAREN fv=NAME RIGHT_PAREN ASSIGN
 polynomial[$fn.text, $fv.text] terminator
 -> ^(DEFINE $fn $fv polynomial);

// fnt = function name text; fvt = function variable text
polynomial[String fnt, String fvt]
 : term[$fnt, $fvt] (SIGN term[$fnt, $fvt])*
 -> ^(POLYNOMIAL term (SIGN term)*);

These are examples from our parser grammar.

An expression starting with “->”
is called a “rewrite rule”.

ANTLR 3

Our Parser Grammar
parser grammar MathParser;

options {

 output = AST;

 tokenVocab = MathLexer;

}

tokens {

 COMBINE;

 DEFINE;

 DERIVATIVE;

 FUNCTION;

 POLYNOMIAL;

 TERM;

}

@header { package com.ociweb.math; }

32

These are imaginary tokens
that will serve as parent nodes
for grouping other tokens
in our AST.

We’re going to output an AST.

We’re going to use the tokens
defined in our MathLexer grammar.

We want the generated parser class
to be in this package.

ANTLR 3

Our Parser Grammar ...
// This is the "start rule".

script: statement* EOF!;

statement: assign | define | interactiveStatement | combine | print;

interactiveStatement: help | list;

assign: NAME ASSIGN value terminator -> ^(ASSIGN NAME value);

value: NUMBER | NAME | functionEval;

functionEval

 : fn=NAME LEFT_PAREN (v=NUMBER | v=NAME) RIGHT_PAREN -> ^(FUNCTION $fn $v);

// EOF cannot be used in lexer rules, so we made this a parser rule.

// EOF is needed here for interactive mode where each line entered ends in EOF

// and for file mode where the last line ends in EOF.

terminator: NEWLINE | EOF;

33

Examples:
a = 19
a = b
a = f(2)
a = f(b)

Examples:
f(2)
f(b)

a “subrule”

When parser rule alternatives contain literal strings,
they are converted to references to
automatically generated lexer rules.
For example, we could eliminate the ASSIGN lexer rule
and change ASSIGN to '=' in this grammar.
The rules in this grammar don’t use literal strings.

AST operator

Parts of rule alternatives
can be assigned to
variables (ex. fn & v)
that are used to refer
to them in rule actions.
Alternatively rule names
(ex. NAME) can be used.

ANTLR 3

Our Parser Grammar ...
define

 : fn=NAME LEFT_PAREN fv=NAME RIGHT_PAREN ASSIGN

 polynomial[$fn.text, $fv.text] terminator

 -> ^(DEFINE $fn $fv polynomial);

// fnt = function name text; fvt = function variable text

polynomial[String fnt, String fvt]

 : term[$fnt, $fvt] (SIGN term[$fnt, $fvt])*

 -> ^(POLYNOMIAL term (SIGN term)*);

34

Examples:
f(x) = 3x^2 - 4
g(y) = y^2 - 2y + 1

Examples:
3x^2 - 4
y^2 - 2y + 1

ANTLR 3

Our Parser Grammar ...
// fnt = function name text; fvt = function variable text

term[String fnt, String fvt]

 // tv = term variable

 : c=coefficient? (tv=NAME e=exponent?)?

 // What follows is a validating semantic predicate.

 // If it evaluates to false, a FailedPredicateException will be thrown.

 { tv == null ? true : ($tv.text).equals($fvt) }?

 -> ^(TERM $c? $tv? $e?)

 ;

 catch [FailedPredicateException fpe] {

 String tvt = $tv.text;

 String msg = "In function \"" + fnt +

 "\" the term variable \"" + tvt +

 "\" doesn't match function variable \"" + fvt + "\".";

 throw new RuntimeException(msg);

 }

coefficient: NUMBER;

exponent: CARET NUMBER -> NUMBER;

35

Examples:
4
4x
x^2
4x^2

Example:
^2

ANTLR 3

Our Parser Grammar ...
help: HELP terminator -> HELP;

list

 : LIST listOption terminator -> ^(LIST listOption);

listOption: FUNCTIONS | VARIABLES;

combine

 : fn1=NAME ASSIGN fn2=NAME op=SIGN fn3=NAME terminator

 -> ^(COMBINE $fn1 $op $fn2 $fn3);

36

Examples:
h = f + g
h = f - g

Examples:
?
help

Examples:
list functions
list variablesExamples:

functions
variables

ANTLR 3

Our Parser Grammar ...
print

 : PRINT printTarget* terminator -> ^(PRINT printTarget*);

printTarget

 : NUMBER -> NUMBER

 | sl=STRING_LITERAL -> $sl

 | NAME -> NAME

 // This is a function reference to print a string representation.

 | NAME LEFT_PAREN RIGHT_PAREN -> ^(FUNCTION NAME)

 | functionEval

 | derivative

 ;

derivative

 : NAME APOSTROPHE LEFT_PAREN RIGHT_PAREN -> ^(DERIVATIVE NAME);

37

Example:
f'()

Examples:
19
3.14
"my text"
a
f()
f(2)
f(a)
f'()

Example:
print "f(" a ") = " f(a)

ANTLR 3

ANTLRWorks
‣ A graphical grammar editor and debugger
‣ Features
‣ highlights grammar syntax errors

‣ checks for grammar errors beyond the syntax variety
‣ such as conflicting rule alternatives

‣ displays a syntax diagram for the selected rule

‣ debugger can step through creation of parse trees and ASTs

38

ANTLR 3

ANTLRWorks ...

39

parser rule
syntax diagram

lexer rule
syntax diagram

Rectangles correspond
to fixed vocabulary symbols.
Rounded rectangles correspond
to variable symbols.

ANTLR 3

ANTLRWorks ...

40

grammar check
result

requesting a
grammar check

ANTLR 3

ANTLRWorks Interpreter
‣ Tests parse tree creation (not AST)

41

doesn’t support
use of predicates
(discussed later)

ANTLR 3

ANTLRWorks Debugger
‣ Simple when lexer and parser rules

are combined in a single grammar file
‣ press Debug

toolbar button

‣ enter input text or
select an input file

‣ select start rule
‣ allows debugging a

subset of grammar

‣ press OK button

42

ANTLR 3

ANTLRWorks Debugger ...
‣ At the bottom of the ANTLRWorks window

43

ASTExample
Start Rule: script

ANTLR 3

ANTLRWorks Debugger ...
‣ A bit more complicated when

lexer and parser rules are in separate files

‣ We’ll demonstrate this
after we see the Java code that
ties all the generated classes together
‣ see slides 61-64

44

See the ANTLR Wiki page
“When do I need to use remote debugging?” at
http://www.antlr.org/wiki/pages/viewpage.action?pageId=5832732

ANTLR 3

Using Rule Return Values

45

printTarget
 : NUMBER { out($NUMBER); }
 | STRING_LITERAL {
 String s = unescape($STRING_LITERAL.text);
 out(s.substring(1, s.length() - 1)); // remove quotes
 }
 | NAME { out(getVariable($NAME)); }
 | ^(FUNCTION NAME) { out(getFunction(NAME)); }
 | functionEval { out($functionEval.result); }
 | derivative // handles own output
 ;

functionEval returns [double result]
 : ^(FUNCTION fn=NAME v=NUMBER) {
 $result = evalFunction($fn, toDouble($v));
 }
 | ^(FUNCTION fn=NAME v=NAME) {
 $result = evalFunction($fn, getVariable($v));
 }
 ;

These are examples from our tree grammar.

“out” is a method we
wrote. See slide 51.

“unescape” is a method
we wrote. See slide 52.

“toDouble” is a method
we wrote. See slide 52.

“getVariable” is a method
we wrote. See slide 51.

“evalFunction” is a method
we wrote. See slide 50.

The code in curly braces is a rule “action”
written in the target language, in this case Java.

“getFunction” is a method
we wrote. See slide 50.

ANTLR 3

Rule Actions
‣ Add code before and/or after

the generated code
in the method generated for a rule
‣ can be used for AOP-like wrapping of methods

‣ @init { ... }
‣ inserts contained code before generated code

‣ can be used to declare local variables used in actions of rule alternatives

‣ used in our tree parser polynomial and term rules ahead

‣ @after { ... }
‣ inserts contained code after generated code

46

ANTLR 3

Attribute Scopes
‣ Data is shared between rules in two ways
‣ passing parameters and/or returning values

‣ using attributes

‣ Attributes can be accessible to
‣ a single rule using @init to declare them

‣ a rule and all rules invoked by it - rule scope

‣ all rules that request the named global scope of the attributes

‣ Attribute scopes
‣ define collections of attributes

that can be accessed by multiple rules

‣ two kinds, global and rule scopes

47

same as options to share
data between Java methods
in the same class

ANTLR 3

Attribute Scopes ...
‣ Global scopes
‣ named scopes defined

outside any rule

‣ define with
scope name {
 type variable;
 . . .
}

‣ request access to the
scope in a rule with
scope name;

‣ rule actions
access variables in
the scope with
$name::variable

‣ Rule scopes
‣ unnamed scopes defined

inside a rule

‣ define with
scope {
 type variable;
 ...
}

‣ rule actions in the
defining rule and
rules invoked by it
access attributes in
the scope with
$rule-name::variable

48

To access multiple
scopes, list them
separated by spaces.

Use an @init
rule action
to initialize
attributes.

ANTLR 3

Our Tree Grammar
tree grammar MathTree;

options {

 ASTLabelType = CommonTree;

 tokenVocab = MathParser;

}

@header {

 package com.ociweb.math;

 import java.util.Map;

 import java.util.TreeMap;

}

@members {

 private Map<String, Function> functionMap = new TreeMap<String, Function>();

 private Map<String, Double> variableMap = new TreeMap<String, Double>();

49

We want the generated parser class
to be in this package.

We’re going to process an AST whose
nodes are of type CommonTree.

We’re going to use the tokens defined in both
our MathLexer and MathParser grammars.
The MathParser grammar already includes
the tokens defined in the MathLexer grammar.

We’re using TreeMaps
so the entries are
sorted on their keys
which is desired
when listing them.

ANTLR 3

Our Tree Grammar ...
 private void define(Function function) {

 functionMap.put(function.getName(), function);

 }

 private Function getFunction(CommonTree nameNode) {

 String name = nameNode.getText();

 Function function = functionMap.get(name);

 if (function == null) {

 String msg = "The function \"" + name + "\" is not defined.";

 throw new RuntimeException(msg);

 }

 return function;

 }

 private double evalFunction(CommonTree nameNode, double value) {

 return getFunction(nameNode).getValue(value);

 }

50

This adds a Function
to our function Map.

This retrieves a Function
from our function Map
whose name matches the text
of a given AST tree node.

This evaluates a function
whose name matches the text
of a given AST tree node
for a given value.

ANTLR 3

Our Tree Grammar ...
 private double getVariable(CommonTree nameNode) {

 String name = nameNode.getText();

 Double value = variableMap.get(name);

 if (value == null) {

 String msg = "The variable \"" + name + "\" is not set.";

 throw new RuntimeException(msg);

 }

 return value;

 }

 private static void out(Object obj) {

 System.out.print(obj);

 }

 private static void outln(Object obj) {

 System.out.println(obj);

 }

51

This retrieves the value of a
variable from our variable Map
whose name matches the text
of a given AST tree node.

These just
shorten the code for
print and println calls.

ANTLR 3

Our Tree Grammar ...
 private double toDouble(CommonTree node) {

 double value = 0.0;

 String text = node.getText();

 try {

 value = Double.parseDouble(text);

 } catch (NumberFormatException e) {

 throw new RuntimeException("Cannot convert \"" + text + "\" to a double.");

 }

 return value;

 }

 private static String unescape(String text) {

 return text.replaceAll("\\\\n", "\n");

 }

} // @members

52

This converts the text of a
given AST node to a double.

This replaces all escaped newline characters
in a String with unescaped newline characters.
It is used to allow newline characters
to be placed in literal Strings that are
passed to the print command.

ANTLR 3

Our Tree Grammar ...
script: statement*;

statement: assign | combine | define | interactiveStatement | print;

interactiveStatement: help | list;

assign: ^(ASSIGN NAME v=value) { variableMap.put($NAME.text, $v.result); };

value returns [double result]

 : NUMBER { $result = toDouble($NUMBER); }

 | NAME { $result = getVariable($NAME); }

 | functionEval { $result = $functionEval.result; }

 ;

functionEval returns [double result]

 : ^(FUNCTION fn=NAME v=NUMBER) {

 $result = evalFunction($fn, toDouble($v));

 }

 | ^(FUNCTION fn=NAME v=NAME) {

 $result = evalFunction($fn, getVariable($v));

 }

 ;

53

This adds a variable
to the variable map.

This returns a value as a double.
The value can be a number,
a variable name or
a function evaluation.

This returns the result of a
function evaluation as a double.

could also use $value here

ANTLR 3

Our Tree Grammar ...
define

 : ^(DEFINE name=NAME variable=NAME polynomial) {

 define(new Function($name.text, $variable.text, $polynomial.result));

 }

 ;

polynomial returns [Polynomial result]

scope { Polynomial current; }

@init { $polynomial::current = new Polynomial(); }

 : ^(POLYNOMIAL term[""] (s=SIGN term[$s.text])*) {

 $result = $polynomial::current;

 }

 ;

54

This builds a
Function object
and adds it to
the function map.

This builds a Polynomial
object and returns it.

The “current” attribute in this rule scope is
visible to rules invoked by this one, such as term.

There can be no sign in front of the first term,
so "" is passed to the term rule.
The coefficient of the first term can be negative.
The sign between terms is passed to
subsequent invocations of the term rule.

ANTLR 3

Our Tree Grammar ...
term[String sign]

@init { boolean negate = "-".equals(sign); }

 : ^(TERM coefficient=NUMBER) {

 double c = toDouble($coefficient);

 if (negate) c = -c; // applies sign to coefficient

 $polynomial::current.addTerm(new Term(c));

 }

 | ^(TERM coefficient=NUMBER? variable=NAME exponent=NUMBER?) {

 double c = coefficient == null ? 1.0 : toDouble($coefficient);

 if (negate) c = -c; // applies sign to coefficient

 double exp = exponent == null ? 1.0 : toDouble($exponent);

 $polynomial::current.addTerm(new Term(c, $variable.text, exp));

 }

 ;

55

This builds a Term
object and adds it to
the current Polynomial.

ANTLR 3

Our Tree Grammar ...
help

 : HELP {

 outln("In the help below");

 outln("* fn stands for function name");

 outln("* n stands for a number");

 outln("* v stands for variable");

 outln("");

 outln("To define");

 outln("* a variable: v = n");

 outln("* a function from a polynomial: fn(v) = polynomial-terms");

 outln(" (for example, f(x) = 3x^2 - 4x + 1)");

 outln("* a function from adding or subtracting two others: " +

 "fn3 = fn1 +|- fn2");

 outln(" (for example, h = f + g)");

 outln("");

 outln("To print");

 // some lines omitted for space

 outln("To exit: exit or quit");

 }

 ;

56

This outputs help
on our language
which is useful in
interactive mode.

ANTLR 3

Our Tree Grammar ...
list

 : ^(LIST FUNCTIONS) {

 outln("# of functions defined: " + functionMap.size());

 for (Function function : functionMap.values()) {

 outln(function);

 }

 }

 | ^(LIST VARIABLES) {

 outln("# of variables defined: " + variableMap.size());

 for (String name : variableMap.keySet()) {

 double value = variableMap.get(name);

 outln(name + " = " + value);

 }

 }

 ;

57

This lists all the
functions or variables
that are currently defined.

ANTLR 3

Our Tree Grammar ...
combine

 : ^(COMBINE fn1=NAME op=SIGN fn2=NAME fn3=NAME) {

 Function f2 = getFunction(fn2);

 Function f3 = getFunction(fn3);

 if ("+".equals($op.text)) {

 define(f2.add($fn1.text, f3));

 } else if ("-".equals($op.text)) {

 define(f2.subtract($fn1.text, f3));

 } else {

 // This should never happen since SIGN is defined to be either "+" or "-".

 throw new RuntimeException(

 "The operator \"" + $op +

 " cannot be used for combining functions.");

 }

 }

 ;

58

This adds or subtracts
two functions to
create a new one.

“$fn1.text” is
the name of the
new function to create.

ANTLR 3

Our Tree Grammar ...
print

 : ^(PRINT printTarget*)

 { System.out.println(); };

printTarget

 : NUMBER { out($NUMBER); }

 | STRING_LITERAL {

 String s = unescape($STRING_LITERAL.text);

 out(s.substring(1, s.length() - 1)); // removes quotes

 }

 | NAME { out(getVariable($NAME)); }

 | ^(FUNCTION NAME) { out(getFunction($NAME)); }

 | functionEval { out($functionEval.result); }

 | derivative

 ;

derivative

 : ^(DERIVATIVE NAME) {

 out(getFunction($NAME).getDerivative());

 }

 ;

59

This prints a list of printTargets
then prints a newline.

This prints a single printTarget
without a newline.

This prints the derivative of a function.
This also could have been done
in place in the printTarget rule.

on slide 53

ANTLR 3

Using Generated Classes
‣ Our manually written Processor class
‣ uses the generated classes

‣ MathLexer extends Lexer

‣ MathParser extends Parser

‣ MathTree extends TreeParser

‣ uses other manually written classes
‣ Function

‣ Polynomial

‣ Term

‣ supports two modes
‣ batch - see processFile method

‣ interactive - see processInteractive method

60

Lexer, Parser and TreeParser
extend BaseRecognizer

ANTLR 3

Processor.java
package com.ociweb.math;

import java.io.*;

import java.util.Scanner;

import org.antlr.runtime.*;

import org.antlr.runtime.tree.*;

public class Processor {

 public static void main(String[] args) throws IOException, RecognitionException {

 if (args.length == 0) {

 new Processor().processInteractive();

 } else if (args.length == 1) { // name of file to process was passed in

 new Processor().processFile(args[0]);

 } else { // more than one command-line argument

 System.err.println("usage: java com.ociweb.math.Processor [file-name]");

 }

 }

61

ANTLR 3

Processor.java ...
 private void processFile(String filePath) throws IOException, RecognitionException {

 CommonTree ast = getAST(new FileReader(filePath));

 //System.out.println(ast.toStringTree()); // for debugging

 processAST(ast);

 }

 private CommonTree getAST(Reader reader) throws IOException, RecognitionException {

 MathParser tokenParser = new MathParser(getTokenStream(reader));

 MathParser.script_return parserResult = tokenParser.script(); // start rule method

 reader.close();

 return (CommonTree) parserResult.getTree();

 }

 private CommonTokenStream getTokenStream(Reader reader) throws IOException {

 MathLexer lexer = new MathLexer(new ANTLRReaderStream(reader));

 return new CommonTokenStream(lexer);

 }

 private void processAST(CommonTree ast) throws RecognitionException {

 MathTree treeParser = new MathTree(new CommonTreeNodeStream(ast));

 treeParser.script(); // start rule method

 }

62

ANTLR 3

Processor.java ...
 private void processInteractive() throws IOException, RecognitionException {

 MathTree treeParser = new MathTree(null); // a TreeNodeStream will be assigned later

 Scanner scanner = new Scanner(System.in);

 while (true) {

 System.out.print("math> ");

 String line = scanner.nextLine().trim();

 if ("quit".equals(line) || "exit".equals(line)) break;

 processLine(treeParser, line);

 }

 }

63

ANTLR 3

Processor.java ...
 private void processLine(MathTree treeParser, String line) throws RecognitionException {

 // Run the lexer and token parser on the line.

 MathLexer lexer = new MathLexer(new ANTLRStringStream(line));

 MathParser tokenParser = new MathParser(new CommonTokenStream(lexer));

 MathParser.statement_return parserResult = tokenParser.statement(); // start rule method

 // Use the token parser to retrieve the AST.

 CommonTree ast = (CommonTree) parserResult.getTree();

 if (ast == null) return; // line is empty

 // Use the tree parser to process the AST.

 treeParser.setTreeNodeStream(new CommonTreeNodeStream(ast));

 treeParser.statement(); // start rule method

 }

} // end of Processor class

64

We can’t create a new instance of MathTree
for each line processed because
it maintains the variable and function Maps.

ANTLR 3

Ant Tips
‣ Ant is a great tool for automating tasks

used to develop and test grammars
‣ generate Java classes and .tokens files from each grammar file

‣ -o option specifies directory where generated files should be written

‣ -lib option specifies directory where .tokens files can be found

‣ only run org.antlr.Tool if the grammar
has changed since the last build
‣ using the “uptodate” task and the “unless” target attribute

‣ compile Java source files

‣ run automated tests

‣ run the application using a specific file as input

‣ delete generated files (clean)

65

<java classname="org.antlr.Tool"
 classpathref="classpath" fork="true">
 <arg line="-lib gen -o gen ${grammar.name}.g"/>
 </java>

.tokens files assign
integer constants
to token names;
used by org.antlr.Tool

-o and -lib values
may differ if lexer,
parser, and tree
grammars are in
different directories.

ANTLR 3

ANTLRWorks Debugger
‣ Let’s demonstrate using remote debugging

which is necessary when lexer and parser
rules are in separate grammar files
‣ edit build.properties to include -debug in tool.options
‣ ant clean run

‣ start ANTLRWorks

‣ open the parser grammar file

‣ select Debugger ... Debug Remote...

‣ press “Connect” button

‣ debug as usual

66

ANTLR 3

ANTLRWorks Debugger ...

67

Some More
Advanced Topics

ANTLR 3

StringTemplate
‣ Great for implementing translators
‣ see slide 6

‣ A template engine implemented in Java
‣ alternative to producing output with printlns

‣ set grammar option “output = template;”

‣ separates output from the logic that produces it
‣ like the view portion of MVC

‣ supports output “retargeting”
‣ for example, translating input into multiple programming languages,

Java bytecode and XML

‣ can automatically indent output source code

‣ http://www.stringtemplate.org

69

Model
input token
or tree node

stream

Controller
parser generated
from grammar

View
templates

ANTLR 3

StringTemplate ...
‣ Output is specified by templates
‣ typically stored in separate text files, not in grammar files

‣ .stg file extension stands for StringTemplate Group

‣ each template can accept “attributes”
and produce single or multi-line output

‣ Example
‣ our Math scripts could be translated

to equivalent Java source code

‣ Usage strategy
‣ every rule returns a StringTemplate object

that represents the accumulated output
from that rule and all rules it invokes

‣ the start rule parser method returns its StringTemplate object
and the code that invoked it prints that object

70

ANTLR 3

‣ StringTemplate Group file syntax

‣ attribute lists are comma-separated attribute names
without types

‣ there are some keywords that cannot be
used for template or attribute names

group name

template-name(attribute-list) ::= "content"

template-name(attribute-list) ::= <<
content
>>

StringTemplate ...

71

Use << >>
for multi-line output
and when content
contains double quotes.

default first group if implements
interface last length optional rest
strip super trunc else endif elseif

The value of name is only important when
group inheritance or interfaces are used.
See http://www.antlr.org/wiki/display/ST/Group+Files

can include
\n characters

ANTLR 3

StringTemplate ...
‣ Expression elements in template content
‣ single-valued attributes

‣ <attribute>

‣ multi-valued attributes
‣ <attribute; separator="text">

concatenates the toString value of each with separator

‣ <first(attribute)>

‣ <last(attribute)>

‣ <rest(attribute)> - all but first

‣ <length(attribute)> - number of values

‣ conditional logic
‣ <if(attr1)>content<elseif(attr2)>content<else>content<endif>

outputs content if attribute has a value and isn’t the boolean false

‣ <if(!attr)>content<endif>
outputs content if attribute doesn’t have a value or is the boolean false

‣ include output of another template
‣ <template-name(attr-list)>

‣ and much more

72

not XML!

ANTLR 3

Reader reader = new FileReader("MathTree.stg");

treeParser.setTemplateLib(new StringTemplateGroup(reader));

reader.close();

MathTree.script_return result = treeParser.script();

System.out.println(result.getTemplate());

assign(name, value) ::=

 <<assign("<name>", <value>);>>

number(text) ::= "<text>"

variable(name) ::= <<getVariable("<name>")>>

assign
 : ^(ASSIGN NAME value)
 -> assign(name={$NAME}, value={$value.st})
 ;

value
 : NUMBER -> number(text={$NUMBER})
 | NAME -> variable(name={$NAME})
 | functionEval -> {$functionEval.st}
 ;

StringTemplate Example

73

Referring to templates in
rewrite rules (MathTree.g)

Templates (MathTree.stg)

Java application code required
(Processor.java)

using the
StringTemplate result
from another rule

a Java method we wrote
that retrieves the value
of a variable from a Map

the start rule method

note use of named parameters
in template calls

See full example in
MathWithStringTemplate.zip.

a Java method
we wrote that
stores the variable
in a HashMap

a rule not shown here

ANTLR 3

Lookahead
‣ Necessary when more than one token must be

examined to choose between rule alternatives
‣ example - Java field or method declaration?

‣ 3 ways to get lookahead
‣ option “backtrack = true;” for infinite lookahead

‣ option “k = look-ahead-distance;” for finite lookahead
‣ more efficient

‣ syntactic predicates to prioritize alternatives - discussed ahead

‣ 2 places to specify options
‣ globally as a grammar option

‣ locally as a rule option so lookahead in each rule can differ

74

accessSpecifier 'static'? type name ('=' value)? ';'
accessSpecifier 'static'? type name '(' parameterList? ')' ...

also see
memoize option

ANTLR 3

Semantic Predicates
‣ Alter parsing based on a boolean expression

written in the target language
‣ Three types

75

validating semantic predicate
throws FailedPredicateException if it evaluates to false

syntax: { target-language-expression }?

location: end of a rule alternative

disambiguating semantic predicate
like a gated sem. pred., but only used when syntax is insufficient to choose

syntax: { target-language-expression }?

location: beginning of a rule alternative

gated semantic predicate
disables a rule alternative if it evaluates to false

if no other alternative matches,
the input is considered a syntax error

could refer to command-line option values

syntax: { target-language-expression }?=>

location: beginning of a rule alternative

ANTLR was the first
parser generator tool
to support grammar
predicates.

ANTLR 3

Validating Sem. Pred.
‣ Example
‣ don’t allow defining a function that is already defined

‣ modify the “define” rule in our tree grammar

76

define
 : ^(DEFINE name=NAME variable=NAME polynomial)
 { !functionMap.containsKey($name.text) }?
 { define(new Function(
 $name.text, $variable.text, $polynomial.result)); }
 ;
 catch[FailedPredicateException e] {
 System.err.println("cannot redefine function " + $name);
 }

ANTLR 3

Gated Sem. Pred
‣ Example
‣ only allow use of the interactive statements “help” and “list”

when in interactive mode

‣ add this near top of our parser grammar

‣ add this to the processLine method in Processor.java
after creating the MathParser instance

‣ modify the “statement” rule in our parser grammar

77

When not in interactive mode and
a list statement is encountered,
the error message “mismatched input
'list' expecting EOF” is output.

defined on slide 33

statement
 : assign | combine | define | print
 | { interactiveMode }?=> interactiveStatement
 ;

@members { public boolean interactiveMode; }

tokenParser.interactiveMode = true;

ANTLR 3

Disambiguating Sem. Pred.
‣ Example
‣ support printing function definitions

without following name with ()
‣ requires checking whether the name is a variable or function

‣ remove the following unneeded alternative
from the parser grammar “printTarget” rule (37)

‣ modify two alternatives in tree grammar “printTarget” rule (59)
‣ old alternatives

‣ new alternatives

78

print f
instead of
print f()

The rule used to
match variable names
will also be used to
match function names.| NAME LEFT_PAREN RIGHT_PAREN -> ^(FUNCTION NAME)

| NAME { out(getVariable($NAME)); }
| ^(FUNCTION fn=NAME) { out(getFunction($fn)); }

| { variableMap.containsKey(((Tree) input.LT(1)).getText()) }?
 NAME { out(getVariable($NAME)); }
| NAME { out(getFunction($NAME)); }

The Parser class has an attribute named “input” that is a TokenStream.
The TreeParser class has an attribute named “input” that is a TreeNodeStream.
Both TokenStream and TreeNodeStream have a method named “LT”
that returns the ith Lookahead Token or tree node.

We’ll assume that name is a
function if it’s not a variable.

ambiguous
alternatives with
different actions

ANTLR 3

Syntactic Predicates
‣ Examine upcoming tokens in the stream

to determine whether a rule alternative
should be considered
‣ if the upcoming tokens match a given sequence

then consider this alternative
‣ rewinds the input stream and processes the alternative

‣ syntax: (sequence)=>

‣ location: beginning of a rule alternative

‣ implemented as a gated semantic predicate

‣ Two uses
‣ to specify precedence of ambiguous rule alternatives

‣ when a fixed amount of lookahead won’t work
‣ recursive, nested structures such as parenthesized groups

‣ otherwise can use “k” option instead

79

ANTLR 3

Syntactic Predicates ...
‣ Example - C function declarations/definitions

‣ function declarations look like type ID '(' arg* ')' ';'

‣ function definitions look like type ID '(' arg* ')' '{' body '}'

‣ can’t recognize them by examining a fixed number of tokens
because arg can consist of nested parentheses
‣ for example “int (*ptr)(double)”

describes an argument named ptr
that is a pointer to a function
that takes a double parameter
and returns an int

‣ could have a pointer to a function
that takes a parameter
that is a pointer to a function

‣ Three ways to resolve
‣ backtrack option

‣ left-factoring alternatives

‣ syntactic predicates

80

Example input:

int add(int m, int n);

int add(int m, int n) {

 return m + n;

}

int myCallback(double x);

void registerCallback(int (*callbackPtr)(double));

int main() {

 registerCallback(myCallback);

 int sum = add(1, 2);

}

ANTLR 3

Syntactic Predicates ...
grammar CFunctions;

source: topLevelStmt* EOF; // start rule

topLevelStmt

 // options { backtrack = true; }

 : (funcDecl)=> funcDecl

 | funcDef

 | COMMENT;

funcDecl: type ID '(' args? ')' ';';

funcDef: type ID '(' args? ')' '{' body '}';

args: arg (',' arg)*;

arg: type ID? | funcPtr;

funcPtr: type '(' '*' ID ')' '(' args ')';

body: (COMMENT | bodyStmt)*;

bodyStmt: (assignment | funcCall | returnStmt) ';';

81

Alternately, funcDecl and funcDef
can be left-factored like this.

topLevelStmt: funcDeclOrDef | COMMENT;
funcDeclOrDef: funcPrefix (';' | '{' body '}');
funcPrefix: type ID '(' args? ')';

A disadvantage of left-factoring is that it makes
writing actions and rewrite rules more difficult
since what were distinct alternatives are now combined.

The “backtrack = true;” grammar/rule option
adds a syntactic predicate to every rule alternative.

This is less efficient than only adding them where needed
and only checking as many tokens as necessary
to select an alternative.

Use of the “backtrack” option is recommended only during
grammar prototyping. It can be eliminated by adding
syntactic predicates or by “left-factoring” alternatives.

recursion

ANTLR 3

Syntactic Predicates ...
assignment: type? ID '=' expression;

type: BUILTIN; // not supporting arrays, structs, pointers or references

expression: value (('+' | '-') value)*;

value: NUMBER | string | ID | funcCall;

funcCall: ID '(' params? ')';

params: expression (',' expression)*;

returnStmt: 'return' expression;

string: '"' ~('"')* '"';

BUILTIN: 'void' | 'bool' | 'char' | 'double' | 'int' | 'float' | 'long' | 'short';

ID: LOWERCASE LETTER*;

fragment LETTER: LOWERCASE | UPPERCASE;

fragment LOWERCASE: 'a'..'z';

fragment UPPERCASE: 'A'..'Z';

NUMBER: '0' | '1'..'9' '0'..'9'*;

NEWLINE: ('\r'? '\n')+ { $channel = HIDDEN; };

WHITESPACE: (' ' | '\t')+ { $channel = HIDDEN; };

82

ANTLR 3

Error Handling
‣ Default error handling
‣ code in the generated method for each rule

is in a try block with the following catch

‣ reportError and recover are methods in BaseRecognizer
‣ the superclass of generated lexer, parser and tree parser classes

‣ override in all rules to stop processing after first error

83

@rulecatch is a
grammar action

catch (RecognitionException re) {
 reportError(re);
 recover(input, re);
 ...
}

@rulecatch {
 catch (RecognitionException re) {
 reportError(re);
 }
}

RecognitionException is the base class
of most exceptions thrown by
generated code. It provides access to
the related input characters or token.

ANTLR 3

Error Handling ...
‣ reportError method
‣ calls displayRecognitionError

‣ concatenates an error header generated by getErrorHeader
with an error message generated by getErrorMessage
and passes the result to emitErrorMessage

‣ calls getErrorHeader

‣ returns “line {line-#}:{column-#}”

‣ override to change or eliminate error message headers

‣ calls getErrorMessage

‣ returns a string that is specific to each RecognitionException subclass

‣ override to customize messages

‣ calls getTokenErrorDisplay

‣ if the token has text, returns that in singles quotes

‣ otherwise returns the token type in angle brackets

‣ calls emitErrorMessage

‣ writes the message to stderr

‣ override to write elsewhere such as a log file

84

These are all BaseRecognizer methods.
The easiest way to override these is to
use the @members grammar action.

ANTLR 3

Error Handling ...
‣ Methods generated for each rule
‣ make multiple calls to the BaseRecognizer match method

in a try block

‣ BaseRecognizer match method
‣ calls mismatch when the next token isn’t what is expected

‣ mismatch throws one of three kinds of exception
based on details of the mismatch
‣ UnwantedTokenException

‣ MissingTokenException

‣ MismatchedTokenException

‣ can override mismatch and call mismatchRecover
to attempt to recover and continue parsing
‣ if an expected token was missing, it will insert a single token

‣ if an unexpected token was found, it will delete a single token

85

ANTLR 3

gUnit
‣ Grammar unit testing framework
‣ at http://www.antlr.org/wiki/display/ANTLR3/gUnit+-+Grammar+Unit+Testing

‣ download gunit-1.0.2.jar

‣ Verifies that grammar produces
expected outputs from specified inputs
‣ input can be a single line (delimited by " "),

multiple lines (delimited by << >>)
or file content

‣ output can be a single line, multiple lines or an AST

‣ can test rule return values

‣ can test that an error message is emitted
or no error message is emitted

86

" " can contain \n characters.

similar to StringTemplate syntax

ANTLR 3

gUnit ...
‣ To run
‣ CLASSPATH must contain ...

‣ antlr-3.0.jar, stringtemplate-3.0.jar and gunit-1.0.2.jar

‣ java org.antlr.gunit.Interp filename.testsuite

‣ Example MathParser.testsuite file
‣ tests AST construction

87

gunit MathParser;

assign:

"a = 3.14" -> (= a 3.14)

combine:

"f = g + h" -> (COMBINE f + g h)

define:

"f(x) = 3x^2 - 2x + 4" ->

(DEFINE f x (POLYNOMIAL (TERM 3 x 2) - (TERM 2 x) + (TERM 4)))

Note that right sides look like
AST construction rewrite rules,
but don’t start with “^”.

To try, download Math.zip
and run “ant gunit”.

ANTLR 3

References
‣ ANTLR
‣ http://www.antlr.org

‣ ANTLRWorks
‣ http://www.antlr.org/works

‣ StringTemplate
‣ http://www.stringtemplate.org

‣ http://www.codegeneration.net/
tiki-read_article.php?articleId=65 and 77

‣ My slides and code examples
‣ http://www.ociweb.com/mark - look for “ANTLR 3”

88

ANTLR 3

Thanks
‣ Thank you for attending my talk!
‣ Feel free to email me questions about ANTLR

89

mark@ociweb.com

