
1

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved.

Ruby Plays Well With Others - Part 1

“You got Ruby in my Java!”
“You got Java on my Ruby!”

“Two great tastes that taste great together.”

Mark Volkmann
mark@ociweb.com

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 2

Ruby Overview
• Features

– object-oriented
– dynamically-typed
– compact, yet easy to read syntax
– blocks that are closures
– open classes and objects
– language of Rails - web app. framework with DSL features

• Current state
– supported by an interpreter implemented in C

• no compiler
• minimal optimization of parsed code

– libraries
• some implemented in Ruby and others in C

– no formal language specification
– small library of tests
– somewhat slower than Python

2

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 3

Ruby Overview (Cont’d)
• Future

– Yet Another Ruby VM (YARV)
• new VM focused on performance
• targeted for Ruby 2.0
• implemented in C by Sasada Koichi

– Rubinus
• another Ruby VM focused on performance
• patterned after Smalltalk VMs
• implemented in C by Evan Phoenix

• Resources
– main web site: www.ruby-lang.org
– books

• “Programming Ruby: The Pragmatic Programmers’ Guide,
Second Edition” - referred to as “the pickaxe”

• “Agile Web Development with Rails”
• many more

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 4

JRuby Overview
• Ruby on JVM

– Ruby interpreter written entirely in Java
– can use Java capabilities from Ruby
– can use Ruby capabilities from Java

• Current state
– supports all Ruby syntax and built-in libraries

and supports most standard libraries
• retained Ruby libraries implemented in Ruby
• many Ruby libraries that are implemented in C

have been reimplemented in Java
– these and other Ruby tools/libraries

work with JRuby
• Active Record (with JDBC), DRb,

Rake (Ruby’s answer to Java’s Ant),
Rails, RSpec (behavior-driven development),
RubyGems

– currently slower than C-based interpreter
• most code takes 2 to 3 times as long to run

Many languages are
implemented on the JVM:

BeanShell
Bex (BeanShell variant)
Groovy
Jaskell (Haskell)
Jawk (AWK)
JudoScript
Jython (Python)
JRuby (Ruby)
Pnuts
Quercus (PHP)
Rhino (JavaScript) …
SISC (Scheme)
Sleep (Perl/Objective-C)
Jacl (TCL)
and more

See list at
http://scripting.dev.java.net/

3

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 5

JRuby Overview (Cont’d)
• Current focus

– creating a formal specification for the language and libraries
• see headius.com/rubyspec

– creating a larger library of tests
– improving compatibility with standard Ruby
– improving performance of interpreter
– getting Rails to run under JRuby

• working on passing existing Rails unit tests
– writing a Ruby to Java bytecode compiler

• initial results are about twice as fast as C-based Ruby interpreter

• Future
– 1.0 release is expected in May 2007

• in time for announcement at JavaOne, May 8-11
– continue improving interpreter and compiler

• a mixed mode is expected where
some code is compiled and some is interpreted

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 6

.NET Ruby Implementations
• RubyCLR

– a Common Language Runtime (CLR) bridge
– from John Lam, hired by Microsoft 1/2007

• see www.iunknown.com/articles/2006/10/20/dynamic-languages-microsoft-and-me

– www.rubyclr.com

• Gardens Point Ruby.NET Compiler
– a compiler, not an interpreter, implemented in C#
– from Queensland University of Technology in Brisbane Australia
– funded by Microsoft
– www.plas.fit.qut.edu.au/rubynet

• IronRuby
– a Ruby interpreter, similar to IronPython, implemented in C#
– from Wilco Bauwer, a Microsoft intern until 12/2006
– project currently on hold
– www.wilcob.com/Wilco/IronRuby.aspx

4

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 7

JRuby History
• Stephen Mattias Aust

– ported the grammar from C-based Ruby to Jay,
a Java-based parser

– Jay is still used by JRuby

• Jan Arne Petersen
– started JRuby project in 2001
– built on work by Aust

• Thomas Enebo
– began work in late 2002
– became project lead in late 2003
– moved JRuby from a 1.6 to a 1.8 implementation

• Charles Nutter
– began work in 2004

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 8

JRuby History (Cont’d)
• Sun Microsystems

– hired Nutter and Enebo to develop JRuby full-time in 9/2006
– Tim Bray at Sun is a major advocate of dynamic languages
– will remain open source
– will provide more Ruby development tools

• such as support in NetBeans

• Other contributors
– Ola Bini became a committer on 10/3/2006

• enabled high-performance YAML support in JRuby
• implemented Enumerable in Java

– Nick Sieger became a committer on 1/1/2007
• original author of ActiveRecord-JDBC connector

– over 35 developers are currently credited for contributing

5

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 9

Reasons To Use JRuby
• To use Java libraries from code written in Ruby syntax

– for example, Swing
• To use Ruby libraries from code written in Java syntax

– for example, ActiveRecord
– two ways

• Bean Scripting Framework (BSF)
• “Scripting for the Java Platform” (JSR 223) in Java 6

• To get a faster implementation of Ruby
– not yet faster than the current C-based Ruby,

but likely will be soon
– “Work is proceeding on the JRuby compiler and initial benchmarks

are impressive. Although it's not ready for prime time yet, and a lot
of Ruby code can't be compiled directly to Java bytecode yet,
benchmarks that have been done show compiled JRuby code to be
up to twice as fast as plain Ruby code running under Ruby C.”

• from www.javalobby.org/java/forums/t89729.html

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 10

What JRuby Offers That Ruby Doesn’t
• Integration with Java libraries

– JRuby classes can
• extend Java classes
• implement a single Java interface
• add methods to existing Java classes

– visible from JRuby, but not Java

• Native threads
– JRuby uses native threads, Ruby uses green threads
– can result in different behaviors between JRuby and Ruby

• Portability
– JRuby runs on any machine with a JVM

• Unicode support
– JRuby uses the unicode support in Java
– Ruby has some support for unicode, but it’s not built-in

The Rails Wiki has a page on using Unicode strings
(wiki.rubyonrails.com/rails/pages/HowToUseUnicodeStrings).
See the unicode gem and unicode_hacks Rails plugin.
Better support is coming soon. See redhanded.hobix.com/cult/
yayMatzIsOnTheCuspOfUnveilingRubySUnicodeSupport.html.

Can “sneak” JRuby into environments
where installing the Ruby interpreter
wouldn’t be allowed.
JRuby can run using an
already installed JRE and
only requires an additional JAR file.

6

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 11

Current Limitations
• JRuby classes can’t …

– implement more than one Java interface
• Java classes can’t …

– inherit from a JRuby class
• Performance

– most code takes 2 to 3 times as long to run with JRuby
as it does with C-based Ruby

• No debugger for JRuby code
– Tor Norbye and Martin Krauskopf of Sun are working on

adding integrated Java/JRuby debugging to NetBeans

this limitation will be removed soon

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 12

Tool Support
• IDEs

– many IDEs support Ruby including these
• Eclipse

– RDT plugin supports Ruby development
– RadRails IDE (based on Eclipse) supports Rails development

• IntelliJ IDEA 6.0
• NetBeans - in work
• TextMate - specific to Mac OS X

• Editors
– many editors offer Ruby support such as syntax highlighting
– examples include emacs, jEdit and Vim

• Spring 2
– an IOC framework and more
– supports beans implemented in

Java, JRuby, Groovy and BeanShell

7

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 13

SuperConsole - Graphical IRB Console
• Similar to Ruby’s Interactive Ruby (IRB)
• Available in several forms

– executable JAR, Mac OS X application, Java Web Start

• Supports class and method name completion
– activate with tab key
– if more than one match is available, select from a popup list

• To download
– browse www.jruby.org and select “JRuby Console” link

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 14

Using JRuby From Command-Line
• Steps to install

– download a binary release from www.jruby.org
– unzip/untar the downloaded archive
– set JRUBY_HOME environment variable

to point to resulting directory
– add $JRUBY_HOME/bin to PATH

• Steps to use
– jruby {script-name}

• suggested file suffix is .jrb when using JRuby extensions; .rb otherwise
• runs the class org.jruby.Main in $JRUBY_HOME/lib/jruby.jar

• Example
– hello.rb

name = ARGV[0] || "you"
puts "Hello #{name}!"

– run with “jruby hello.rb”; outputs “Hello you!”
– run with “jruby hello.rb Mark”; outputs “Hello Mark!”

To checkout from the trunk of the Subversion respository,
svn co http://svn.codehaus.org/jruby/trunk/jruby
To build, simply run “ant”.
Of course Java and Ant must be installed.

8

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 15

Using Java Classes in JRuby
• Must require 'java'
• Provide full names of Java classes to be used

option #1 - provide full name when using
frame = javax.swing.JFrame.new('My Title')

option #2 - assign full class name to a constant
JFrame = javax.swing.JFrame
frame = JFrame.new('My Title')

option #3 - use include_class
include_class 'javax.swing.JFrame'
frame = JFrame.new('My Title')

option #4 - use include_class with an alias
include_class('java.lang.String') do |pkg_name, class_name|
 "J#{class_name}"
end
msg = JString.new('My Message')

option #5 - use include_package
module Swing
 include_package 'javax.swing'
end
frame = Swing::JFrame.new('My Title')

options 1 & 2 only work
with classes in packages
that begin with
java, javax, com and org

include_package can only
be used inside a module
and has performance issues

useful when the
name of a Java
class matches
the name of a
Ruby class

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 16

Proxy Classes
• JRuby creates proxy classes for Java classes

– allows methods to be added just like in Ruby
• Example

require 'java'

include_class 'java.util.ArrayList'
list = ArrayList.new
%w(Red Green Blue).each { |color| list.add(color) }

Add "first" method to proxy of Java ArrayList class.
class ArrayList
 def first
 self.size == 0 ? nil : self.get(0)
 end
end

puts "first item is #{list.first}"

Add "last" method only to the list object ... a singleton method.
def list.last
 self.size == 0 ? nil : self.get(self.size - 1)
end

puts "last item is #{list.last}"

Output
first item is Red
last item is Blue

9

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 17

Method Calling Details
• Parens aren’t required when calling methods

– foo.bar() is the same as foo.bar
– foo.bar(baz) is the same as foo.bar baz

• Can invoke Java get/set/is methods like Ruby accessors
– value = foo.getBar() is the same as value = foo.bar
– foo.setBar(value) is the same as foo.bar = value
– foo.isBar() is the same as foo.bar?
– but when invoking a method without a receiver …

• bar is interpreted as a reference to a local variable
• to make it be interpreted as a method call, use self.bar

• Method naming conventions
– can invoke camel-cased Java methods with those names

or use Ruby underscore convention
require 'java'
url = java.net.URL.new('http://www.ociweb.com')
puts url.to_external_form # method name is toExternalForm
puts url.to_uri # method name is toURI

underscore versions of methods
get added to JRuby proxy class

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 18

Automatic Conversions

Ruby types
– Boolean
– String
– Fixnum

– Float

– Array
– Hash

Java types
– boolean, java.lang.Boolean
– char, java.lang.String
– byte, java.lang.Byte,

short, java.lang.Short,
int, java.lang.Integer,
long, java.lang.Long

– float, java.lang.Float,
double, java.lang,Double

– java.util.List
– java.util.Map

• Listed below are some of the conversions
between Ruby and Java types that happen automatically

– for more see code in the following files
• src/builtin/javasupport.rb
• src/builtin/java/*.rb
• src/org/jruby/javasupport/Java.java
• src/org/jruby/javasupport/JavaUtil.java

10

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 19

Ruby Methods Added to Core Java Classes
• java.lang String and type wrapper classes

– <=>
– mixes in Ruby’s Comparable module

which adds many methods defined in terms of <=>
• java.util collection classes

– Collection (base interface of List and Set)
• each (iterator)
• << (append)
• + (adds another collection)
• - (removes another collection)
• mixes in Ruby’s Enumerable module which adds many methods

– List
• [], []=, sort and sort!

– Map
• each, [] and []=

see src/builtin/java/collections.rb

<, <=, ==, =>, >,
between?

all?, any?, collect,
each_with_index,
find, find_all, grep,
max, min, sort, sort_by,
etc.

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 20

ArrayList Example
require 'java'

list = java.util.ArrayList.new

puts list.kind_of? java.util.List
puts list.instance_of? java.util.ArrayList
puts list.class.ancestors
puts "list is a #{list.class.name}"
puts "list is a #{list.java_class}"

list << 'Mark'
Since everything in Ruby is an object,
numbers and booleans can be added to Java collections.
list << 19
list << true
list.each { |element| puts element } # "each" method added to ArrayList

The following line invokes the Java ArrayList#toString method
instead of the Ruby Array#to_s method.
puts list

Output
false (a bug)
true
#<Class:01x3d511e> (a bug)
Enumerable
ConcreteJavaProxy
JavaProxy
Object
Kernel
list is a (a bug)
list is a java.util.ArrayList

Output
Mark
19
true

Output
[Mark, 19, true]

should have
a name

11

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 21

JRuby Inheriting From Java Classes
package com.ociweb.demo;

public class Car {
 private String make;
 private String model;
 private int year;

 public Car() {}

 public Car(String make, String model, int year) {
 this.make = make;

 this.model = model;

 this.year = year;

 }

 public String getMake() { return make; }
 public String getModel() { return model; }
 public int getYear() { return year; }

 public void setMake(String make) { this.make = make; }
 public void setModel(String model) { this.model = model; }
 public void setYear(int year) { this.year = year; }

 public String toString() {
 return year + " " + make + " " + model;

 }

}

require 'java'

Car = com.ociweb.demo.Car

c = Car.new('Honda', 'Prelude', 1997)
puts c

class RaceCar < Car
 attr_accessor :top_speed

 def initialize(
 make=nil, model=nil, year=0, top_speed=0)

 super(make, model, year)

 @top_speed = top_speed

 end

 def to_s
 "#{super} can go #{@top_speed} MPH"

 end

end

c = RaceCar.new('Ferrari', 'F430', 2005, 196)
puts c

c = RaceCar.new('Porche', '917')
c.year = 1971

c.top_speed = 248

puts c
Output
1997 Honda Prelude
2005 Ferrari F430 can go 196 MPH
1971 Porche 917 can go 248 MPH

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 22

Swing Demo
require 'java'

BorderLayout = java.awt.BorderLayout
JButton = javax.swing.JButton
JFrame = javax.swing.JFrame
JLabel = javax.swing.JLabel
JOptionPane = javax.swing.JOptionPane
JPanel = javax.swing.JPanel
JTextField = javax.swing.JTextField

12

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 23

Swing Demo (Cont’d)
class BlockActionListener < java.awt.event.ActionListener
 # super call is needed for now - see JRUBY-66 in JIRA
 def initialize(&block); super; @block = block; end
 def actionPerformed(e); @block.call(e); end
end

class JButton
 def initialize(name, &block)
 super(name)
 addActionListener(BlockActionListener.new(&block))
 end

end

class HelloFrame < JFrame
 def initialize
 super('Hello Swing!')
 populate
 pack
 self.resizable = false
 self.defaultCloseOperation = JFrame::EXIT_ON_CLOSE
 end

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 24

Swing Demo (Cont’d)
 def populate
 name_panel = JPanel.new
 name_panel.add JLabel.new('Name:')
 name_field = JTextField.new(20)
 name_panel.add name_field

 button_panel = JPanel.new
 greet_button = JButton.new('Greet') do
 name = name_field.text
 msg = %(<html>Hello #{name}!</html>)

 JOptionPane.showMessageDialog self, msg
 end

 button_panel.add greet_button
 clear_button = JButton.new('Clear') { name_field.text = '' }
 button_panel.add clear_button

 contentPane.add name_panel, BorderLayout::CENTER
 contentPane.add button_panel, BorderLayout::SOUTH
 end

end # of HelloFrame class

HelloFrame.new.visible = true

13

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 25

Installing Gems Under JRuby
• Gems are …

– the preferred mechanism for packaging, distributing and installing
Ruby libraries and applications

• Use scripts in JRuby bin directory to work with them
– for example, to install a gem

cd $JRUBY_HOME/bin
./gem install activerecord -y

– currently, generating rdoc and ri documention from JRuby is slow
• to avoid this when installing gems, include

--no-rdoc --no-ri

-y is equivalent to
--include-dependencies

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 26

Using Gems in JRuby
• Required setup

– set the following system properties
• jruby.base=$JRUBY_HOME
• jruby.home=$JRUBY_HOME
• jruby.lib=$JRUBY_HOME/lib
• jruby.script={jruby for Unix variants, jruby.bat for Windows}
• jruby.shell={/bin/sh for Unix variants, cmd.exe for Windows}

– set load path
• append the following directories to the global array $:

– $JRUBY_HOME/lib
– $JRUBY_HOME/lib/ruby/site_ruby/1.8
– $JRUBY_HOME/lib/ruby/site_ruby/1.8/java
– $JRUBY_HOME/lib/ruby/site_ruby
– $JRUBY_HOME/lib/ruby/1.8
– $JRUBY_HOME/lib/ruby/1.8/java
– lib/ruby/1.8

• See ActiveRecord example later

for the ActiveRecord example,
done in my JRubyHelper.java

for the ActiveRecord example,
this is done in the Ant build.xml

14

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 27

Bean Scripting Framework (BSF)
• A Java library that

– allows Java code to
• evaluate code written in various scripting languages

– allows scripting language code to
• access Java objects
• invoke Java methods

• “Scripting languages” with BSF engines include
– Groovy, Javascript (Rhino), Python (Jython), Ruby (JRuby),

JudoScript, NetRexx, ooRexx, ObjectScript, PROLOG (JLog),
Tcl (Jacl), XSLT (Xalan and Xerces)

• Key methods in BSFManager class
– registerScriptingEngine

– exec - executes script code
– eval - executes script code and returns its value
– declareBean - creates an object in the context of a scripting language

 (global variable) that won’t be retrieved with lookupBean
– registerBean - adds an object to the object registry
– lookupBean - gets an object from the object registry

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 28

JRuby From Java 5 - BSF
• Consider increasing maximum memory

-Xmx256m

• Setup from Java
– classpath must contain these JARs from JRuby lib directory

• bsf.jar
• jruby.jar
• jvyaml.jar - a Java YAML parser and emitter

– register the JRuby engine
String language = "ruby";
String engineName = "org.jruby.javasupport.bsf.JRubyEngine";
String[] extensions = {"rb"};
BSFManager.registerScriptingEngine(
 language, engineName, extensions);

– create a BSFManager
BSFManager manager = new BSFManager();

15

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 29

JRuby From Java 5 - BSF (Cont’d)
• BSF beans - option #1

– in Java, declare Java objects as BSF beans
manager.declareBean("frame", aFrame, JFrame.class);

– in Ruby, access beans through global variables
• in this case, $frame

• BSF beans - option #2
– in Java, register Java objects as BSF beans

manager.registerBean("frame", aFrame);

– in Ruby, lookup registered beans via $bsf object
$bsf.lookupBean("frame")

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 30

JRuby From Java 5 - BSF (Cont’d)
• Running Ruby code from Java

– to execute Ruby code with no return value
manager.exec("ruby", "(java)", 1, 1,
 "$frame.setTitle('My Title')");

– to evaluate Ruby code, returning a value
String sourceLang = "java";
String scriptLang = "ruby";
String scriptCode = "(1..5).collect {|e| e**2 }";
List<Long> squares = (List<Long>)
 manager.eval(scriptLang, sourceLang, 1, 1, scriptCode);
for (long square : squares) {

 System.out.println(square);
}

The “1, 1” parameters are
line and column numbers
that provide context info.

Output
1
4
9
16
25

16

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 31

Java Using ActiveRecord
• ActiveRecord is …

– a Ruby library for accessing relational databases
• Can be used from Java through JRuby

– install the ActiveRecord gem as shown earlier
– under Java 5 and earlier

• use Bean Scripting Framework (BSF)
– classpath must contain

bsf.jar, jruby.jar, jvyaml.jar, commons-logging-1.1.jar

– under Java 6 and later
• use JSR 223 Scripting API

– we'll focus on BSF here
– the classes BSFHelper and JRubyHelper

were written to make this easier
• get them from links on

http://www.ociweb.com/mark/ActiveRecord.html

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 32

Query.java
package com.ociweb.activerecord;

import com.ociweb.bsf.BSFHelper;
import com.ociweb.jruby.JRubyHelper;
import java.util.*;
import org.apache.bsf.BSFException;
import org.jruby.*;

public class Query {

 private BSFHelper bsf = new BSFHelper();
 private JRubyHelper helper = new JRubyHelper();

 public static void main(String[] args) throws Exception {
 new Query();
 }

 private Query() throws BSFException, java.io.IOException {
 // Pass a Java object into Ruby code which will populate it.
 System.out.println("\n2003 Recordings");
 List recordings = new ArrayList();
 bsf.declareBean("recordings", recordings);
 bsf.evalFile("2003recordings.jrb");

17

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 33

Query.java (Cont’d)
 // Retrieve data that Ruby populated into recordings.
 Iterator iter = recordings.iterator();
 while (iter.hasNext()) {
 RubyObject recording = (RubyObject) iter.next();

 // The attributes of Recording are id, name, year and artist_id.
 String recordingName =
 (String) helper.getAttribute(recording, "name");

 // Get the Artist object associated with this Recording object.
 // What is the intermediate object here?
 RubyObject artist = helper.callMethod(recording, "artist");
 artist = (RubyObject) artist.getInstanceVariable("@target");

 String artistName = (String) helper.getAttribute(artist, "name");

 System.out.println(" " + recordingName + " by " + artistName);
 }

 }

}

Output
2003 Recordings
 Soviet Kitch by Regina Spektor
 Transatlanticism by Deathcab For Cutie

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 34

2003recordings.jrb
require 'models'

$recordings is a Java ArrayList that is created in Query.java
and declared as a BSF bean.
This code populates it with Ruby Recoding objects.

Recording.find_all_by_year(2003).sort.each do |r|
 $recordings << r

end

18

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 35

models.rb
require 'rubygems'

require 'active_record'

ActiveRecord::Base::establish_connection(
 :adapter=>'mysql',

 :host=>'localhost',

 :database=>'music',

 :user=>'root', :password=>'')

class Artist < ActiveRecord::Base
 has_many :recording
 # Sort based on artist name.
 def <=>(other); name <=> other.name; end
end

class Recording < ActiveRecord::Base
 belongs_to :artist
 # Sort based on recording name.
 def <=>(other); name <=> other.name; end
end

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 36

JRuby From Java 6 - JSR 223 Scripting API
• Setup

– install Java 6
– download JRuby

• from www.jruby.org
• works with 0.9.1, but not 0.9.2, what about 0.9.8?

– download scripting engines
• from http://scripting.dev.java.net
• click “Documents & files” link
• download jsr223-engines zip or tar
• unzip or untar it

– add to classpath
• jruby.jar from JRuby download
• jruby-engine.jar from scripting engines download

19

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 37

JSR 223 - Evaluating Scripts
• ScriptEngine eval method

– takes a String of Ruby code or a Reader
• to read from a file in the file system

new BufferedReader(new FileReader(path));

• to read from a file in the classpath
new InputStreamReader(
 ClassLoader.getSystemResourceAsStream(path));

– returns the return value of the script, if any

import javax.script.*;

public class JSR223Demo {

 public static void main(String[] args) throws ScriptException {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("jruby");
 engine.eval("puts 'Hello World!'");
 }

}

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 38

JSR 223 - Invoking Functions and Methods
• Steps

– load the script that defines the functions to be invoked
using the ScriptEngine eval method

– cast ScriptEngine to Invocable
Invocable invocable = (Invocable) scriptEngine;

– optionally specify data to be made available
to the scripting language through global variables
invocable.put(name, value);

• reference in Ruby code with $name
• doesn’t work in current version of JRuby

– invoke a Ruby function or method
Object returnValue =
 invocable.invokeFunction(functionName [, params]);
Object returnValue =
 invocable.invokeMethod(object, functionName [, params]);

a script object returned by a previous invocation

parameters can
be any type

20

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 39

JSR-223 Example - demo.rb
class Calculator
 def average_of_3(n1, n2, n3)
 (n1 + n2 + n3) / 3.0

 end

 def average(*array)
 sum = 0

 array.each { |n| sum += n }
 sum.to_f / array.size
 end

end

def getCalculator
 Calculator.new
end

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 40

JSR 223 Example - Demo.java
import java.io.*;
import javax.script.*;

public class Demo {

 public static void main(String[] args)
 throws IOException, NoSuchMethodException, ScriptException {
 ScriptEngineManager manager = new ScriptEngineManager();
 ScriptEngine engine = manager.getEngineByName("jruby");
 engine.eval(new BufferedReader(new FileReader("src/demo.rb")));

 Invocable invocable = (Invocable) engine;
 Object calculator = invocable.invokeFunction("getCalculator");
 double average = (Double) invocable.invokeMethod(
 calculator, "average_of_3", 1, 4, 5);

 System.out.println("average = " + average);

 average = (Double) invocable.invokeMethod(
 calculator, "average", 1, 4, 5);

 System.out.println("average = " + average);
 }

}

Output
average = 3.3333333333333335
average = 3.3333333333333335

21

JRuby

Copyright © 2007 by Object Computing, Inc. (OCI).
All rights reserved. 41

More Information
• Web pages

– project homepage - www.jruby.org
• Wikis

– www.headius.com/jrubywiki
• Mailing lists

– see “Mailing Lists” link at www.jruby.org
• Blogs

– Nutter’s - headius.blogspot.com
– Enebo’s - www.bloglines.com/blog/ThomasEEnebo
– Bini’s - ola-bini.blogspot.com

• Podcasts
– Java Posse interview with Nutter and Enebo on 1/17/07

• javaposse.com/index.php?post_id=171709

• Books
– Nutter and Enebo plan to write a book on JRuby soon

